Tutorials for

Structural Analysis – I (3140603)

B.E. Semester - 4 (Civil Engineering)

Shantilal Shah Engineering College, Bhavnagar

Directorate of Technical Education Gandhinagar, Gujarat

Shantilal Shah Engineering College, Bhavnagar

Certificate

This is to certify that Mr./Ms.	
Enrollment No	of B.E. Semester 4th Civil
Engineering of this institute (GTU	Code: <u>043</u>) has satisfactorily
completed the tutorial work for the	subject Structural Analysis - I
(3140603) for the academic year	

Place: <u>Bhavnagar</u> Date: _____

Name and Sign of Faculty member

Head of the Department

Name of Student:Enrollment Number:Name of Subject:Subject Code:3140603

INDEX

Sr. No.	Particulars Date of Issue	Date of	Date of Submission	Page No.		Crada	Sign of
		Issue		From	То	Grade	Faculty
1	Fundamental of Statically Determinate Structures						
1.1	Basics	09/01/2025	24/01/2025				
1.2	Framed Structures	09/01/2025	14/02/2025				
1.3	Arches & Cables	09/01/2025	07/03/2025				
1.4	Thin cylinder	09/01/2025	07/03/2025				
2	Strain Energy & Displacement of Statically Determinate Structures						
2.1	Strain Energy	09/01/2025	28/02/2025				
2.2	Displacement of Determinate Beams	09/01/2025	21/03/2025				
3	Direct and Bending Stresses + Column & Struts						
3.1	Direct and Bending Stresses	09/01/2025	04/04/2025				
3.2	Columns and Struts	09/01/2025	07/02/2025				
4	Statically Indeterminate Beams	09/01/2025	12/04/2025				

Assignment No: 01 Date: 09/01/2025

Unit:1 - Fundamental of Statically Determinate Structures

Sub Code 3140603

Title of Subject STRUCTURAL ANALYSIS - I

Questions		
Basics		
Describe with illustrations types of statically determinate and indeterminate structures.		
Define SI & KI.		
Write Maxwell's reciprocal theorem and Principle of superposition.		
Find static and kinematic indeterminacy for the structures shown below. Also comment about stability.		

APPLIED MECHANICS DEPARTMENT

APPLIED MECHANICS DEPARTMENT

Arches & Cables			
8	A three-hinged parabolic arch of 100 feet span with a central rise of 20 feet, carries loads of 20		
	and 30 tons at horizontal distances of 30 and 40 feet respectively from the ends. Calculate the		
	B.M., normal thrust and shear force at each quarter-point.		
9	For a three hinged parabolic arch having rise of 6m, span of 40m and loaded by a point load of		
	250 kN at 10m from left support and an UDL of 20kN/m over right half. Calculate the maximum		
	B.M. in both the halves. Also calculate the bending moment, shear force and normal thrust at 15m		
	from left support.		
10	The cable AE supports three vertical loads from the points indicated. If point C is 1.5 m below the		
	left support, determine (a) the elevation of points B and D, and (b) the maximum slope and		
	maximum tension in the cable.		
$\begin{array}{c} E \\ A \\ 1.5 \\ m \\ 6 \\ kN \\ 6 \\ m \\ 6 \\ m \\ 3 \\ m \\ 4.5 \\ m $			
Thin cylinder			
11	A cylindrical pipe of diameter 1.5m and thickness 15mm is subjected to an internal fluid pressure		
	of 1.2 N/mm ² . Determine longitudinal stress and circumferential stress developed in the pipe.		
12	A thin cylinder of internal diameter 1.25m contains a fluid at an internal pressure of 2N/mm ² .		
	Determine the maximum thickness of the cylinder if: (i) the longitudinal stress is not to exceed		
	30N/mm ² (ii) the circumferential stress is not to exceed 45 N/mm ² .		

As	Assignment No: 02 Unit:2 – Strain Energy & Displacement of Statically			
Da	Date:08/01/2025Determinate Structures			
Su	Sub Code 3140603 Title of Subject STRUCTURAL ANALYSIS - I			
#	Questions			
	Strain Energy			
1	Define: Resilience, Proof resilience and Modulus of resilience.			
2	Find an expression for the strain energy stored in a body when			
	(i) The load is applied with impact (ii) The load causes bending			
3	A steel rod is 3.00 m long and 50 mm in diameter. An axial pull of 100 kN is applied to the rod.			
	Calculate (i) Stretch in the rod, (ii) Stress in the rod, (iii) Strain energy absorbed by the rod.			
	If 80 kN load is suddenly applied, determine (i) Instantaneous stress induced, (ii) Instantaneous			
	elongation produced in the rod, (iii) Strain energy absorbed by the rod. Take $E = 200 \text{ GN/m}^2$.			
4	A uniform metal bar has a cross-sectional area of 700 mm ² and a length of 1.5 m. If the stress at the			
	elastic limit is 160 N/mm^2 , what will be its proof resilience? Determine also the maximum value of			
	an applied load, which may be suddenly applied without exceeding the elastic limit. Calculate the			
	value of the gradually applied load which will produce the same extension as that produced by the			
	suddenly applied load above. Take $E = 2 \times 10^5 \text{ N/mm}^2$.			
5	A weight of 15 kN falls by 30 mm on a collar rigidly attached to lower end of a vertical bar 4.00 m			
	long and 1000 mm ² in section. The upper end of the vertical bar is fixed. Find the instantaneous			
	expansion, stress and energy absorbed by the bar. Find also impact factor. Take $E = 200$ GPa.			
6	Find the strain energy in a simply supported beam of "L" m length, carrying uniformly distributed			
	load "w" kN/m run. Assume uniform flexural rigidity.			
7	Find the strain energy of cantilever beam of 3.00 m length, carrying point load of 50 kN at free end.			
	Take $E = 2 \times 10^5 \text{ N/mm}^2$, $I = 4 \times 10^6 \text{ mm}^4$.			
8	A tension bar is made up of 5.00 m long is made up of two parts, 3.00 m of its length has a cross			
	sectional area of 10 cm^2 while remaining 2.00 m has cross sectional area of 20 cm^2 . An axial load of			
	80 kN is gradually applied. Find the total strain energy produced in the bar and compare this value			
	that obtained in a uniform bar of the same length and having same volume when under the same			
	load. Take $E = 2 X 10^5 N/mm^2$.			

Assignment No: 03 Unit:3 – Direct and Bending Stresses + Column &		
Date:	Date: 08/01/2025 Struts	
Sub C	ode 3140603 Title of Subject STRUCTURAL ANALYSIS - I	
#	Questions	
	Direct and Bending Stresses	
1	Distinguish between direct and bending stress.	
2	Obtain a relation for the maximum and minimum stresses at the base of a symmetrical column	
	when it is subjected to a) An eccentric load about one axis, b) An eccentric load about two axis.	
3	Explain kernel of a section. Show that for no tension at the base of a short column, the line of	
	action of the load should be within the middle third.	
4	Draw a neat sketch of Kernel of following cross-section:	
	a) Rectangular 200 mm X 300 mm	
	b) Hollow circular cylinder with external diameter = 300 mm , thickness = 50 mm	
	c) Square with 600 cm^2 area	
5	A hollow rectangular column is having external and internal dimensions as 120 cm deep X 80 cm	
	wide and 90 cm deep X 50 cm wide respectively. A vertical load of 200 kN is transmitted in the	
	vertical plane bisecting 120 cm side and at an eccentricity of 10 cm from the geometric axis of	
	the section. Calculate the maximum and minimum stresses in the section.	
6	A rectangular pier of 1.50 m X 1.00 m is subjected to a compressive load of 450 kN with as	
	shown in figure. Find the stress on all four corners of the pier.	
	c y c	
	0.25 m	
	0.25 m X	
	A J B	
7	A masonry dam of rectangular cross-section 12.00 m high and 5.00 m wide has water up-to the	
	top on its one side. If the density of masonry is 2300 kg/m ³ , find	
	a) Pressure force due to water per meter length of dam,	
	b) Resultant force and the point at which it cuts the base of dam	
	c) The maximum and minimum stress intensities at the base of the dam	

8	A trapezoidal masonry dam is of 20.00 m height. The dam is having water up-to a depth of 16.00
	m on its vertical side. The top and bottom width of the dam are 3.00 m and 9.00 m respectively.
	The density of the masonry is given as 2000 kg/m^2 . Determine
	a) The resultant force on the dam per meter length
	b) The point where the resultant cuts the base
	c) The maximum and minimum stress intensities at the base
	Columns and Struts
1	A strut 2.50 m long is 60 mm in diameter. One end of the strut is fixed while its other end is
	hinged. Find the compressive load for the member using Euler's formula, allowing a factor of
	safety of 3.5. Take $E = 2.10 \text{ X} 10^5 \text{ N/mm}^2$.
2	Calculate the critical load for a strut which is made of a bar circular in section and 5.00 m long
	and which is pin jointed ant both ends. The same bar when freely supported gives a mid span
	deflection of 10 mm under a load of 80 N at the centre.
3	A steel column of "I" section ISHB 300 is used as a column 4.00 m long with both ends hinged.
	Determine Euler's critical load for the column. If the section is strengthened by a cover plate of
	310 mm X 8 mm for each flange. What would be Euler's critical load? Take for the "I" section
	area = 7485 mm ² , I_{xx} = 1.2545 X 10 ⁸ mm ⁴ , I_{yy} = 2.1936 X 10 ⁷ mm ⁴ , modulus of elasticity
	$E = 2 X 10^5 N/mm^2$.
4	A steel bar of rectangular section 30 mm X 40 mm pinned at each end is subjected to axial
	compression. The bar is 1.75 m long. Determine the buckling load and the corresponding axial
	stress using Euler's formula.
5	A round steel rod of diameter 15 mm and length 2.00 m is subjected to a gradually increasing
	axial compressive load. Using Euler's formula, find the buckling load. Find also the maximum
	lateral deflection corresponding to the buckling condition. Both ends of the rod maybe taken as
	hinged. Take $E = 2.1 \times 10^5 \text{ N/mm}^2$ and the yield stress of steel = 250 N/mm ² .
6	A hollow cast iron column 5.00 m long is fixed at both ends and has an external diameter of
	300 mm. The column supports an axial load of 1200 kN. Find the internal diameter of the
	column, adopting a factor of safety of 5. Take $f_c = 550 \text{ N/mm}^2$ and $\alpha = 1/1600$. E = 200 GPa.

Assignment No: 04 Date: 08/01/2025

Unit:4 Statically Indeterminate Beams

Sub Code 3140603

Title of Subject STRUCTURAL ANALYSIS - I

#	Questions		
1	Advantages and Disadvantages of Indeterminate Structures.		
2	Find the fixed end moments if one of the supports of fixed beam settles by " δ " units.		
3	A Fixed Beam of 7.00 m span carries a uniformly distributed load of 10 kN/m from left end for		
	3.00 m. Analyze the beam and draw Bending Moment Diagram (B.M.D.) showing important		
	values.		
4	Determine fixed end moments for the fixed beam loaded as shown in figure. Take EI = constant.		
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ \left\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \left\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \left\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \bigg{)} \end{array} \\ \bigg{)} \end{array} \\ \bigg{)} \bigg{)} \bigg{)} \bigg{)} \bigg{)} \\ \bigg{)}		
5	Analyse a propped cantilever beam of span 6.00 m and subjected to a U.D.L. of 24 kN/m over		
	entire span using consistent deformation method. Draw shear force and bending moment		
0	Using the method of consistent deformation, analyze the following propped cantilever beams. Take $E = 200 \text{ GPa} \text{ & } I = 80 \text{ X} 10^6 \text{ mm}^4$		
	$A = \begin{bmatrix} 50kN \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		

