

Shantilal Shah Engineering College,

Bhavnagar

Subject: Physics

All Branches

Certificate

This is to certify that Shri/Kum
of B.E. semester-1/2 of
branch with enrolment number
has satisfactorily completed his/her term work of the
subject PHYSICS during the academic year
and submitted on

Date:

Faculty in charge

General Department

Physics (All Branches)

List of Experiments and Rubrics for Assessment

Code	Objective	Arrangement (All components arranged in perfect manner without	Reading (Student is able to take reading and keeping record	Calculation (Done all calculations	Graph (Completed Graph with	Understanding/ Conclusion (Excellent understanding	VIVA	Attendance	TOTAL
P_1	Measurement of the Numerical Aperture (NA) of the optical fiber.	10	10	5	0	5	10	10	50
P_2 (VLAB)	 To determine the Hall voltage developed across the sample material. To calculate the Hall coefficient and the carrier concentration of the sample material. 	5	10	5	0	10	10	10	50
P_3 (VLAB)	Determination of Plank's constant.	5	10	5	0	10	10	10	50
P_4 (VLAB)	To determine the wavelength of the given source using Newton's ring.	10	10	5	0	5	10	10	50
P_5 (VLAB)	To calculate beam divergence and spot size of the given laser beam.	5	5	5	10	5	10	10	50
P_6 (VLAB)	To determine the moment of inertia of the given disc using Torsion pendulum, with identical masses	5	5	10	0	10	10	10	50
P_7	Understand the function of CRO and measure the <i>rms</i> voltage and frequency of AC signal using CRO.	10	10	5	0	5	10	10	50

P_8	To study V-I Characteristics of P-N junction diode.	10	5	5	5	5	10	10	50
P_9 (VLAB)	 To determine the stopping potential from the graph of photocurrent versus applied potential. To determine the Planck's constant from the graph of kinetic energy versus frequency. To determine work function of given material. 	5	5	5	10	5	10	10	50
P_10 (VLAB)	To find the Young's modulus of the given wood bar by uniform bending using pin and microscope method.	10	10	5	0	5	10	10	50

General Department

Physics (Practical)-3110018

<u>Index</u>

Sr. No.	Code	Objective	Arrangement	Reading	Calculation	Graph	Understanding/ Conclusion	VIVA	Attendance	TOTAL	SIGN
		1	CRIM								
1	P_1	Measurement of the Numerical Aperture (NA) of the optical fiber.	(10)	(10)	(5)	(0)	(5)	(10)	(10)	(50)	
		[6] [6]	nu.		1674						
2	P_2 (VLAB)	 To determine the Hall voltage developed across the sample material. To calculate the Hall coefficient and the carrier concentration of the sample material. 	(5)	(10)	(5)	(0)	(10)	(10)	(10)	(50)	
	·	X	er gunna Mitaturt	i an esta R	·//	1					
3	P_3 (VLAB)	Determination of Plank's constant.	(5)	(10)	(5)	(0)	(10)	(10)	(10)	(50)	
			State of the local division of the local div								
4	P_4 (VLAB)	To determine the wavelength of the given source using Newton's ring.	(10)	(10)	(5)	(0)	(5)	(10)	(10)	(50)	
	·										
5	P_5 (VLAB)	To calculate beam divergence and spot size of the given laser beam.	(5)	(5)	(5)	(10)	(5)	(10)	(10)	(50)	
6	P_6 (VLAB)	To determine the moment of inertia of the given disc using Torsion pendulum, with identical masses.	(5)	(5)	(10)	(0)	(10)	(10)	(10)	(50)	
		,	1		1				1	1	

7	P_7	Understand the function of CRO and	(10)	(10)	(5)	(0)	(5)	(10)	(10)	(50)	
		measure the <i>rms</i> voltage and frequency of									
		AC signal using CRO.									

8	P_8	To study V-I Characteristics of P N junction	(10)	(5)	(5)	(5)	(5)	(10)	(10)	(50)	
		Diode									
9	P_9	1. To determine the stopping potential	(5)	(5)	(5)	(10)	(5)	(10)	(10)	(50)	
	(VLAB)	 from the graph of photocurrent versus applied potential. 2. To determine the Planck's constant from the graph of kinetic energy versus frequency. 3. To determine work function of given material. 									
		18/3	172	78	1						

10	P_10	To find the Young's modulus of the given	(10)	(10)	(5)	(0)	(5)	(10)	(10)	(50)	
	(VLAB)	wood bar by uniform bending using pin									
		and microscope method.									

Physics Laboratory Manual

Experiment-1 (P_1)

Code	Objective of the experiment	Course Outcome
P_1	Measurement of the Numerical Aperture (NA) of the fiber.	CO-5

• **Objective**: Measurement of the Numerical Aperture (NA) of the fiber.

Instrument Used : Fiber Optics Trainer (Scientech 2502)

Items Required:

- 1. ST2502 trainer with power supply cord
- 2. Optical Fiber cable.
- 3. Numerical Aperture measurement Jig/Paper & Scale

Procedure:

- 1. Connect the Power supply cord to mains supply and to the trainer ST2502.
- Connect the frequency generator's 1 KHz sine wave output to input of emitter 1 circuit. Adjust its amplitude at 5 V pp.
- **3.** Connect one end of fiber cable to the output socket of emitter 1 circuit and the other end to the numerical aperture measurement jig. Hold the white screen facing the fiber such that its cut face is perpendicular to the axis of the fiber.
- 4. Hold the white screen with 4 concentric circles (10, 15, 20 & 25 mm diameter) vertically at a suitable distance to make the red spot from the fiber coincide with 10 mm circle.
- Record the distance of screen from the fiber end L and note the diameter W of the spot.
- 6. Compute the numerical aperture from the formula: NA = $\frac{W}{\sqrt{4L^2 + W^2}}$ = sin θ_{max}

✤ <u>Diagram</u>:

Numerical Aperture measurement Jig/Paper & Scale

✤ Observation Table:

Sr. No.	Diameter of the spot (W)	Distance between screen and fibre (L)	Numerical Aperture (NA)
1.	10 mm		
2.	15 mm		
3.	20 mm		
4.	25 mm		

✤ <u>Calculations</u>:

(1) NA =
$$\frac{W}{\sqrt{4L^2 + W^2}}$$

(2) NA =
$$\frac{W}{\sqrt{4L^2 + W^2}}$$

(3) NA =
$$\frac{W}{\sqrt{4L^2 + W^2}}$$

$$(4) \text{ NA} = \frac{\text{W}}{\sqrt{4L^2 + \text{W}^2}}$$

* **<u>Result</u>**: The N.A. of fiber measured is using trigonometric formula.

Code	Experiment	Arrangement	Reading	Calculations	Graph	Understanding /Calculation	viva	Attendance	Total
		(10)	(10)	(5)	(0)	(5)	(10)	(10)	(50)
P_1	NA of Fibre Optic								

Physics Laboratory Manual

Experiment-2 [P_2 (VLAB)]

Code		Objective of the experiment	Course Outcome
<u>د م</u>	1.	To determine the Hall voltage developed across the sample material.	
P_2	2.	To calculate the Hall coefficient and the carrier concentration of the	CO-4
(VLAD)		sample material	

₩ Website link: <u>http://vlab.amrita.edu/?sub=1</u>

✤ <u>Objective</u>:

- 1. To determine the Hall voltage developed across the sample material.
- 2. To calculate the Hall coefficient and the carrier concentration of the sample material.

✤ <u>Apparatus</u>:

Two solenoids, Constant current supply, four probe, Digital gauss meter, Hall Effect apparatus (which consist of Constant Current Generator (CCG), digital milli voltmeter and Hall probe).

✤ <u>Procedure</u>:

<u>Controls</u>

Combo box

Select procedure: This is used to select the part of the experiment to perform.

- 1) Magnetic field Vs Current.
- 2) Hall Effect setup.
- Select Material: This slider activates only if Hall Effect setup is selected. And this is used to select the material for finding Hall coefficient and carrier concentration.

- Button
 - Insert Probe/ Remove Probe: This button used to insert/remove the probe in between the solenoid.
 - Show Voltage/ Current: This will activate only if Hall Effect setup selected and it used to display the Hall voltage/ current in the digital meter.
 - **Reset**: This button is used to repeat the experiment.
- ♦ Slider
 - Current: This slider used to vary the current flowing through the Solenoid.
 - Hall Current: This slider used to change the hall current
 - **Thickness:** This slider used to change the thickness of the material selected.

Procedure for doing the simulation:

- To measure the magnetic field generated in the solenoid
 - Select Magnetic field Vs Current from the procedure combo-box.
 - Click Insert Probe button
 - Placing the probe in between the solenoid by clicking the wooden stand in the simulator.
 - Using Current slider, varying the current through the solenoid and corresponding magnetic field is to be noted from Gauss meter.

• Hall Effect apparatus

- Select Hall Effect Setup from the Select the procedure combo box
- Click Insert Hall Probe button
- Placing the probe in between the solenoid by clicking the wooden stand in the simulator.
- Set "current slider" value to minimum.
- Select the material from "Select Material" combo-box.
- Select the Thickness of the material using the slider **Thickness**.
- Vary the Hall current using the sllider Hall current.
- Note down the corresponding Hall voltage by clicking "show voltage" button.
- Then calculate Hall coefficient and carrier concentration of that material using the equation

R_H=V_Ht/(I*B)(4)

Where R_H is the Hall coefficient

R_H=1/ne(5)

And *n* is the carrier concentration

• Repeat the experiment with different magnetic file.

Observation Table-(1):

Trial No:	Current through solenoid	Magnetic field generated
1		
2		

Observation Table-(2): Material: ______

Trial	Magnetic Field	Thickness (t)	Hall current,	Hall Voltage	D
No:	(Tesla T)	(m)	(mA)	(mV)	КH
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					

✤ <u>Calculation</u>:

1) For Magnetic Field =..... and thickness =....

2) For Magnetic Field =..... and thickness =....

✤ <u>Result</u>:

(1) Hall Coefficient of the material, $R_H = \dots m^3/C$

(2) Carrier concentration of the material, $n = \dots m^{-3}$

Code	Experiment	Arrangement (5)	Reading (10)	Calculations (5)	Graph (0)	Understanding /Calculation (10)	viva (10)	Attendance (10)	Total (50)
P_2	Hall Effect								

Physics Laboratory Manual

Experiment-3 [P_3 (VLAB)]

Code	Objective of the experiment	Course Outcome				
P_3 (VLAB)	Determination of Planck's constant	CO-3				

₩ Website link: <u>http://vlab.amrita.edu/?sub=1</u>

◆ **Objective**: Determination of Planck's constant.

✤ <u>Apparatus</u>:

0-10 V power supply, a one way key, a rheostat, a digital milliammeter, a digital voltmeter, a 1 K resistor and different known wavelength LED's (Light-Emitting Diodes)

✤ <u>Procedure</u>:

- 1. After the connections are completed, click on 'Insert Key' button.
- 2. Click on the combo box under 'Select LED' button.
- 3. Click on the 'Rheostat Value' to adjust the value of rheostat to 500 Ω .
- 4. Corresponding voltage across the LED is measured using a voltmeter, which is the knee voltage.
- 5. Repeat, by changing the LED and note down the corresponding knee voltage.
- 6. Calculate h using formula, $h = \frac{e \lambda V}{c}$

✤ Observation Table:

Sr. No.	Colour of LED	Wavelength, λ (nm)	Knee Voltage, V (V)	λV (nm · V)	Average λV
1	Red				
2	Green				
3	Yellow				
4	Blue				

✤ <u>Calculation</u>:

 $(e = 1.6 \times 10^{-19} \text{ C}, c = 3 \times 10^8 \text{ m/s})$

- > Plank's Constant, $h = \frac{e}{c}$ (average λV) = J s.
- ✤ <u>Result</u>: Value of Plank's constant is J s.

Code	Experiment	Arrangement (5)	Reading (10)	Calculations (5)	Graph (0)	Understanding /Calculation (10)	viva (10)	Attendance (10)	Total (50)
P_4	Planck's constant								

Physics Laboratory Manual

Experiment-4 [P_4 (VLAB)]

Code	Objective of the experiment	Course Outcome
P_4 (VLAB)	To determine the wavelength of the given source using Newton's ring.	CO-3

米 Website link: <u>http://vlab.amrita.edu/?sub=1</u>

- ◆ **Objective:** To determine the wavelength of the given source using Newton's ring.
- <u>Components</u>: Start button, Light source, Filter, Microscope, Lens, Medium and Glass plate.
- ◆ **Equation:** The wavelength of monochromatic light can be determined as

$$\lambda = \frac{D_{m+p}^2 - D_m^2}{4 \, p \, R}$$

Where, D_{m+p} is the diameter of the $(m+p)^{\text{th}}$ dark ring and D_m is the diameter of the mth dark ring.

R is radius of curvature of lens used

✤ <u>Variable region:</u>

- Choose Medium Combo box helps you to choose the type of medium that the simulation have to perform.
- Radius Slider helps to change the radius of curvature of lens.
- > The wavelength slider helps to change the wavelength of light used.

✤ <u>Measurement region:</u>

- > The start button will help to play the simulation.
- The variation in the rings can be seen when the medium, wavelength of light or the radius of the lens changes.

✤ <u>Procedure:</u>

- Click on the "light on" button.
- Select the lens of desirable radius.
- > Adjust the microscope position to view the Newton rings.
- > Focus the microscope to view the rings clearly.
- Fix the cross-wire on 20th ring either from right or left of the centre dark ring and take the readings.
- Move the crosswire and take the reading of 18th, 16th......2nd ring.
- > You have to take the reading of rings on either side of the centre dark ring.
- > Enter the readings in the tabular column.
- Calculate the wavelength of the source by using the given formula.

✤ Observations:

> To find Least Count

- 1. One main scale division= cm
- 2. Number of divisions on Vernier =
- 3. L.C = One main scale division/ Number of division on vernier =.....
- 4. R = Radius of lens =

✤ Observation Table:

Sr.	Order	Microscopic Reading (cm)		Diameter D	D ² (cm ²)	$D^2_{m+p} - D^2_m$	
		Left	Right		(en)	(0)	
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							

✤ <u>Calculation:</u>

> Mean value of $D^2_{m+p} - D^2_m = \dots cm^2$ Wavelength of light, $\lambda = \frac{D^2_{m+p} - D^2_m}{4 p R}$

 $\therefore \lambda$ =nm

✤ <u>Result:</u>

Wavelength of light from the given source is found to be = nm

Code	Experiment	Arrangement	Reading	Calculations	Graph	Understanding /Calculation	viva	Attendance	Total
		(10)	(10)	(5)	(0)	(5)	(10)	(10)	(50)
P_4	Newton's ring (Wavelength of light)								

Physics Laboratory Manual

Experiment-5 [P_5 (VLAB)]

Code	Objective of the experiment	Course Outcome
P_5	To calculate the beam divergence and spot size of the given laser beam.	CO-3

₭ Website link: <u>http://vlab.amrita.edu/?sub=1</u>

- **Objective**: To calculate the beam divergence and spot size of the given laser beam.
- **Apparatus:** A laser source, An ammeter, Micrometer Screw gauge

Procedure:

- 1. The experimental arrangement is shown in the simulator. A side view and top view of the setup is given in the inset.
- 2. The start button enables the user to start the experiment.
- 3. From the combo box, select the desired laser source.
- Then fix a detector distance, say 100 cm, using the slider Detector distance, z. The z distance can be varied from 50 cm to 200 cm.
- 5. For a particular z distance, change the detector distance x, from minimum to maximum. Using the slider detector distance, x, The micrometer distances and the corresponding output currents are noted. The x distances can be read from the zoomed view of the micrometer and the current can be note from the digital display of the output device.
- **6.** Draw the graph and calculate the beam divergence and spot size using the steps given above.

✤ Observations:

To find the Least Count of Screw gauge:

- One pitchscale division (n) = mm
- Number of divisions on head scale (m) =
- Least Count (L.C) = n/m = mm

For Z₁ = cm For Z₂ = cm Distance, x Current, I Distance, x Current, I Sr. No. Sr. No. (mm) (mA) (mm) (mA) 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12

✤ Observation Table:

✤ <u>Calculation</u>:

From Graph-1

- > $1/e^2$ of maximum intensity (Current), I_e = mA

From Graph-2

- > $1/e^2$ of maximum intensity (Current), I_e = mA

Divergence angle (θ)

 $\theta = \frac{d_2 - d_1}{z_2 - z_1} = \dots \dots \text{ rad}$

✤ <u>Result</u>: Beam divergence of the given laser beam is m rad.

Code	Experiment	Arrangement	Reading	Calculations	Graph	Understanding/ Calculation	viva	Attendance	Total
		(5)	(5)	(5)	(5)	(10)	(10)	(10)	(50)
P_5	LASER DIVERGENCE								

Scale: X-axis: 1 cm =

Y-axis: 1 cm =

Physics Laboratory Manual

Experiment-6 [P_6 (VLAB)]

Code	Objective of the experiment	Course Outcome
P_6	To determine the moment of inertia of the given disc using Torsion	CO 1
	pendulum, with identical masses	0-1

₩ Website link: <u>http://vlab.amrita.edu/?sub=1</u>

- Objective: To determine the moment of inertia of the given disc using Torsion pendulum, with identical masses.
- Components: The given torsion pendulum, two identical cylindrical masses, stop watch, metre scale, etc.

Procedure:

- 1. The radius of the suspension wire is measured using a screw gauge.
- The length of the suspension wire is adjusted to suitable values like 0.3 m, 0.4 m,
 0.5 m,0.9 m, 1 m etc.
- 3. The disc is set in oscillation. Find the time for 20 oscillations twice and determine the mean period of oscillation ' T_0 '.
- 4. The two identical masses are placed symmetrically on either side of the suspension wire as close as possible to the centre of the disc, and measure d₁ which is the distance between the centres of the disc and one of the identical masses.
- 5. Find the time for 20 oscillations twice and determine the mean period of oscillation T_1 .

- 6. The two identical masses are placed symmetrically on either side of the suspension wire as far as possible to the centre of the disc, and measure d_2 which is the distance between the centres of the disc and one of the identical masses.
- 7. Find the time for 20 oscillations twice and determine the mean period of oscillation T_2 .
- 8. Find the moment of inertia of the disc using the given formulae.

✤ Observations:

- 1. Mass of the disc, $m = \underline{1 \text{ kg}}$
- 2. Radius of the suspension wire = **<u>0.0004 m</u>**
- 3. Mass of each identical masses = 50×10^{-3} kg
- 4. $d_1 = 1.5 \times 10^{-2} m$
- 5. $d_2 = \underline{4 \times 10^{-2} m}$

✤ Observation Table:

Length of the suspensio		1	lime for	20 os	cillati	ons (in s	econ	ds)		F OSC S	$\frac{T_0^2}{(2,2)}$		
n wire /	Wit	Without mass			ith masses at d_1 With masses			es at d ₂	<i>T</i> ₀/2			$\left(T_{2}^{2}-T_{1}^{2}\right)$	
(<i>m</i>)	1	2	Меап (<i>т</i> ₀)	1	2	Mean (T1)	1	2	Mean (T ₂)	0	<i>T</i> 1/20	T ₂ /20	
0.3	56.71	56.99	56.85	56.9	57.3	57.1	56.76	56.89	56.82	2.842	2.855	2.841	
0.4													
0.5													
0.6													

***** Calculations:

Moment of inertia of the given disc, $I_0 = 2 m (d_2^2 - d_1^2) \frac{T_0^2}{(T_2^2 - T_1^2)} = \frac{1.39 \times 10^{-3} \text{ kg m}^2}{1.39 \times 10^{-3} \text{ kg m}^2}$

✤ <u>Result:</u>

The moment of inertia of the given disc is $\ensuremath{\mbox{kg-m}^2}$

Code	Experiment	Arrangement	Reading	Calculations	Understanding/ Calculation	viva	Attendance	Total
	·	(5)	(5)	(10)	(10)	(10)	(10)	(50)
P_6	Torsional Pendulum							

Physics Laboratory Manual

Experiment-7 (P_7)

Code	Objective of the experiment	Course Outcome	
D 7	Understand the function of CRO and measure the rms voltage	CO-4	
Р_/	and Frequency of AC signal using CRO.	0-4	

- Objective: Understand the function of CRO and measure the *rms* voltage and Frequency of AC signal using CRO.
- Components: CRO, Function Generator

Procedure:

- Switch on the CRO and Function Generator.
- Study and understand the function of every knob on CRO and function generator.
- Set function generator to any frequency with a particular peak to peak voltage (V_P)
- > Connect the output of function generator to any channel of CRO.
- > Adjust CRO so that stable and full signal is viewed.
- > Measure V_P using formula-(1). Determine $V_P \& V_{rms}$.
- > Determine the frequency of the same signal.
- Repeat for different signals.

* Observation Table:

1. Measurement of AC voltage:

Sr. No.	Signal no.	Division on Y-axis	Volt/div.	V _P	Vrms
1	Signal-1				
2	Signal-2				
3	Signal-3				

2. Measurement of AC frequency:

Sr.	Signal no.	Division on	Time (div	Time Period	Frequency
No.	Signal no.	X-axis	Time/aiv.	(<i>T</i>)	(f)
1	Signal-1				
2	Signal-2				
3	Signal-3				

✤ <u>Calculation:</u>

1. <u>Signal-1</u>

- Voltage (V_P) = (Division on Y-axis) (volt/division) =
- ➤ V_{rms} = 0.707 V_P =.....
- Time period (T) = (Division on X-axis) (time/division) =
- ➢ Frequency (*f*) =.....

2. <u>Signal-2</u>

- > Voltage (V_P) = (Division on Y-axis) (volt/division) =
- ➤ V_{rms} = 0.707 V_P =.....
- Time period (T) = (Division on X-axis) (time/division) =
- ➢ Frequency (*f*) =.....

3. Signal-3

- Voltage (V_P) = (Division on Y-axis) (volt/division) =
- ➤ V_{rms} = 0.707 V_P =.....
- Time period (T) = (Division on X-axis) (time/division) =
- Frequency (f) =.....

✤ <u>Result:</u>

With the help of CRO one can determine the *rms* voltage and frequency of AC signal.

Code	Experiment	Arrangement	Reading	Calculations	Graph	Understanding/ Calculation	viva	Attendance	Total
Coue	Experiment	(10)	(10)	(5)	(0)	(5)	(10)	(10)	(50)
P_7	CRO								

Physics Laboratory Manual

Experiment-8 (P_8)

Code	Objective of the experiment	Course Outcome		
P_8	To study V-I Characteristics of P N junction Diode	CO-2		

- ◆ **Objective**: To study V-I Characteristics of P N junction Diode
- Instrument Used: Diode Characteristics Trainer (NV6501)
- ✤ Items Required:
 - 1. Semiconductor Diode, Regulated Power Supply
 - 2. Connecting wire

Procedure:

Study of Forward bias characteristics

- **1.** Before switch 'On' the supply rotate potentiometer P1 fully in CCW (counter clockwise direction).
- Connect Ammeter between TP4 and TP10, to measure diode current I_F (mA)
 & set Ammeter at 200 mA range (as shown in fig. 1).
- Connect Voltmeter across TP3 and TP11, to measure diode voltage V_F & set Voltmeter at 20 V range.
- **4.** Switch 'On' the power supply.
- 5. Vary the potentiometer P1 so as to increase the value of diode voltage V_D from 0 to 1 V (0.83 V) in steps and measure the corresponding values of diode current I_D in mA and note down in the Observation Table-(1).
- **6.** Switch 'Off' the supply.

Study of Reverse bias characteristics

- Before switch 'On' the supply rotate potentiometer P1 fully in CCW (counter clockwise direction).
- 8. Connect Ammeter between **TP5** and **TP10**, to measure diode current I_R (μA) & set Ammeter at **200** μA range (as shown in fig. 1).
- **9.** Connect Voltmeter across **TP3** and **TP11**, to measure diode voltage V_R & set Voltmeter at **20 V** range.
- **10.** Switch 'On' the power supply.
- **11.** Vary the potentiometer P1 so as to increase the value of diode voltage V_R from 0 to 15 V in steps and measure the corresponding values of diode current I_R in μA and note down in the Observation Table-(2).
- **12.** Switch 'Off' the supply.
- **13.** Plot a curve between diode voltage V_D/V_R and diode current I_D/I_R using suitable scale, with the help of Observation Table. This curve is the required characteristics curve of Si diode.

Circuit Diagram:

✤ Observation Table-1:

	Forward Bias	Forward Bias	Static Resistance
Sr.	Voltage, V _F	Current, I _F	R = V/I
No.	(volt)	(mA)	(Ohm)
1.			
2.			
3.			
4.			
5.			
6.			
7.			
8.			
9.			
10.			
11.			

* Calculation:

> From the graph:

Dynamic Resistance of diode is, $R_d = \frac{\Delta V_F}{\Delta I_F}$

✤ Observation Table-2:

Sr. No.	Reverse Bias Voltage, V _R (volt)	Reverse Bias Current, I _R (μΑ)
1.		
2.		
3.		
4.		
5.		
6.		
7.		
8.		
9.		
10.		

✤ Graph: I v/s V graph is shown on page no____.

* <u>Result</u>:

- 1) The dynamic resistance of the diode, R_d = Ohm.
- The static resistance of the diode is ohm with value of current mA and value of voltage is volt.
- 3) Breakdown voltage for the diode is volt.

Code	Experiment	Arrangement	Reading	Calculations	Graph	Understanding /Calculation	viva	Attendance	Total
		(10)	(5)	(5)	(5)	(5)	(10)	(10)	(50)
P_1	p-n junction diode								

Scale: X-axis: 1 cm =

Y-axis: 1 cm =

Physics Laboratory Manual

Experiment-9 [P_9 (VLAB)]

Code		Objective of the experiment	Course Outcome
	1.	To determine the stopping potential from the graph of photocurrent versus applied potential.	
P_9 (VLAB)	2.	To determine the Planck's constant from the graph of kinetic energy versus frequency.	CO-3
	3.	To determine work function of given material.	

₩ Website link: <u>http://vlab.amrita.edu/?sub=1</u>

Objectives:

- 1. To determine the stopping potential from the graph of photocurrent versus applied potential.
- 2. To determine the Planck's constant from the graph of kinetic energy versus frequency.
- 3. To determine work function of given material.

✤ <u>Apparatus</u>:

Battery, Rheostat, Voltmeter, Ammeter, Photosensitive metal, Collector, Source of light

Procedure:

- 1. Select the material for studying photoelectric effect.
- 2. Select area of the material, wavelength, intensity of incident light.
- 3. Switch on the light source.
- 4. Measure the reverse current for various reverse voltages.
- 5. Plot the current-voltage graph and determine the threshold voltage.
- **6.** Repeat the experiment by varying the wavelength for a particular intensity of incident light and note down stopping potential for each wavelength.

✤ <u>Observations</u>:

- (1) Photosensitive material =
- (2) Area of the plate = cm^2
- (3) Intensity of incident light = W/m^2

✤ Observation Table:

Sr No	Wavelength	Voltage	Current
51. NO	(<i>nm</i>)	(Volt)	(μA)
1			
2			
3			
4			
5			
6			
7			
8			

Sr No	Wavelength	Voltage	Frequency	Kinetic Energy
51. NO	(<i>nm</i>)	(Volt)	(Hz)	(eV)
1				
2				
3				
4				
5				
6				

✤ <u>Calculation</u>:

 $(e = 1.6 \times 10^{-19} \text{ C}, c = 3 \times 10^8 \text{ m/s})$

- ▶ Work function, $\phi = h f_0 = \dots$ J.
- ▶ Work function, $\phi = h f_0 / e = \dots eV$.

✤ Graphs:

- (1) Photocurrent vs Applied Potential
- (2) Kinetic Energy of electron vs Frequency on incident light

✤ <u>Result</u>:

- (1) The value of stopping potential from the current vs voltage graph is V.
- (3) The work function of _____ = eV

Code	Experiment	Arrangement (5)	Reading (5)	Reading Calculations (5) (5)		Understanding /Calculation (5)	viva (10)	Attendance (10)	Total (50)
P_9	Photoelectric Effect								

Y-axis: 1 cm =

Scale: X-axis: 1 cm =

Physics Laboratory Manual

Experiment-10 [P_10 (VLAB)]

Code	Objective of the experiment	Course Outcome
P_10	To find the Young's modulus of the given wood bar by uniform bending	CO 1
(VLAB)	using pin and microscope method.	0-1

Website link: <u>https://vlab.amrita.edu/?sub=1&brch=280&sim=550&cnt=2</u>

- Objective: To find the Young's modulus of the given wood bar by uniform bending using pin and microscope method.
- Components: Pin and Microscope arrangement, Scale, Vernier callipers, Screw gauge, Weight hanger, Material bar or rod.

✤ Equation:

In uniform Bending, the young modulus of the material of the bar is given by

$$Y = \frac{3mgpl^2}{2bd^3e}$$

- m Mass at each end of the bar (for which elevation of bar is e)
- g Acceleration due to gravity.
- p Distance between the point of suspension of the mass and nearer knife edge.
- I the length of the bar between the knife edges.
- b breadth of the wood bar
- d thickness of the wood bar
- e Elevation of the midpoint of the bar for a mass m at each end.

✤ <u>Procedure:</u>

- Select the environment and material for doing experiment.
- Adjust length, breadth and thickness of the material bar using sliders on the right side of the simulator. Adjust the parameters as per observations.

- > Fix the distance between knife edges and weight hangers using sliders.
- Focussing the microscope using focussing knob and adjusting the tip of the pin coincides with the point of intersection of the cross wires using left and top knobs on microscope respectively.
- Readings are noted using the microscope reading for 50 g. Zoomed part of microscope scale is available by clicking the centre part of the apparatus in the simulator.
- Weights are added one by one say 100g, then pin moves downwards while viewing through microscope. Again, adjust the pin such that it coincides exactly with the cross wire.
- Note the microscope reading in observation table and repeat for 10 reading by increasing and decreasing the weights.
- > The total reading of the microscope is given by the formula: (MSR) + (VSR * LC).
- MSR (Main Scale Reading) is the value on the main scale that coincides exactly with the zero of the vernier scale. VSR (Vernier Scale Reading) is the division on the vernier scale that aligns precisely with a division on the main scale. LC is the least count of the microscope.

* **Observations:**

- 1. Distance between two consecutive division on main scale = cm
- 2. Number of divisions on Vernier scale =
- L.C = Distance between two consecutive division on main scale/Number of divisions on vernier scale =cm
- 4. Acceleration due to gravity $g = 980 \text{ cm/s}^2$
- 5. Breadth of the wood bar **b** = 1 cm
- 6. Thickness of the wood bar *d* = 0.4 cm
- 7. Distance between the point of suspension (Weight hangers' distance)p = 60 cm
- 8. The length of the bar between the knife edges (Knife edge distance)*l* = 20 cm

* Observation Table:

	Mass		Telescope Reading (cm)								
Sr. No.	of	Loading			Unloading				for Load		
	weight						Mean	m = 100	Mean	l²/e	
	hanger	MSR	VSR	Total	MSR	VSR	Total Reading	of Total Reading	gm e (cm)	e cm	
	(Load)			Reading							
	gm									[
1	50										
2	100										
3	150										
4	200										
5	250										
6	300										
7	350										
8	400										
9	450										
10	500										

✤ <u>Calculation:</u>

The young modulus of the wood bar is given by, $Y = \frac{3 m g p l^2}{2 b d^3 e}$

Result:

Young's modulus of the given wood bar Y = N/m^2

Code	Experiment	Arrangement	Reading	Calculations	Graph	Understanding /Calculation	viva	Attendance	Total
		(10)	(10)	(5)	(0)	(5)	(10)	(10)	(50)
P_10	Yong Modulus (by bending of beam)								