Design of Structures (3150612)

B.E. Semester 5 (Civil Engineering)

Engineering College Shantilal Shah Engineering College, Bhavnagar Academic Year: 2024 – 2025

Directorate of Technical Education Gandhinagar, Gujarat

Shantilal Shah Engineering College, Bhavnagar

Certificate

This is to certify that Mr./Ms	
Enrollment No	of B.E.
Semester 5 th Civil Engineering of this institute (GTU Code:	<u>043</u>) has
satisfactorily completed the tutorial work for the subject $\underline{\mathbf{D}}$	Design of
Structures (3150612) for the academic year	

Place: <u>Bhavnagar</u> Date: _____

Name and Sign of Faculty member

Head of the Department

Important Instructions for Students

- [1] Use A 4 size blank pages to prepare design report.
- [2] The report shall have following format (lay out)

	Main Heading	Page No
Margin for Bullets	Sub heading Design calculation/write up	Margin to write references

- [3] Use only front side of page for write up as well as for sketches and detailing.
- [4] Mark 1¹/₂" margins on both left and right. Use left margin to show bullets and right margin to show references like clause of code/page etc.
- [5] Start new design problem on new page.
- [6] Heading and sub heading shall be distinct than write up.
- [7] Support the calculation/s with neat sketches wherever required.
- [8] Attach A3 size sheets to furnish design detailing (Use AutoCAD Drawing for at-least one design problem).
- [9] All design detailing shall be strictly as per relevant IS standards.
- [10] Spiral bound is preferred as it is more convenient for reading.
- [11] Student shall bring required IS codes and other references in class and tutorial hours as listed below.
- [12] IS 456: 2000, IS 800: 2007, IS 875 (Part I to V), SP: 6 (Part-1)] all the Codes includes latest Amendment), steel table

Index

(Progressive Assessment Sheet)

Sr. No.	Name of Tutorial / Assignment	Page No.	Starting Date	Date of submission	Marks	Sign. of Teacher with Date	Remarks
	PART A: TUTORIAL	2:1 to	<u>6 (Reinfo</u>	rced Concr	ete Stru	<u>ictures)</u>	
1	Introduction		22-07-2024	05-09-2024			
2	Beams						
(a)	Singly Reinforced Beam		22-07-2024	19-09-2024			
(b)	Doubly Reinforce Beam		22-07-2024	19-09-2024			
(c)	T Beam		22-07-2024	19-09-2024			
3	Slabs		22-07-2024	03-10-2024			
4	Columns		22-07-2024	10-10-2024			
5	Footing		22-07-2024	17-10-2024			
6	Bond, Development Length & Shear Reinforcement		22-07-2024	17-10-2024			
	PART B: TUT	ORIA	L: 7 to 10) (Steel Stru	ictures)		
7	Introduction & Tension Member		22-07-2024	26-09-2024			
8	Compression Member, Lacing and Battening		22-07-2024	10-10-2024			
9	Steel Beam		22-07-2024	17-10-2024			
10	Slab Base and Gusseted Base		22-07-2024	17-10-2024			
	Total						

PART – A TUTORIAL – 1 to 6 (Reinforced Concrete Structures)

TUTORIAL-1

INTRODUCTION

	COs	LEVEL
1. Define the aim of structural design.	1	R
2. List out various methods of structural design.	1	R
3. Write down the difference between Limit State Method (LSM) and Working Stress Method (WSM).	1	R
4. Define characteristic cube compressive strength of concrete (fck) and characteristic strength of steel (fy).	1, 2	R
5. Define tensile strength of steel (fct).	1, 2	R
6. Write advantage and disadvantages of RCC. Why steel is used as reinforcement in RCC?	1, 2	R
7. List out the combination of loads as per IS-1893.	1, 2	R
8. Calculate effective span for (a) Simply supported beam and slab (b) continuous beam and slab (c) cantilever beam as per IS 456(2000)	1, 2	E
 9. Define basic values of span to effective depth ratios for Cantilever beam, simply supported beam and Continuous beam (a) for spans up to 10m. (b) Spans above 10m. 	1, 2	R
10. Explain difference between column and strut.	1	U
11. Explain maximum diameter of bar used in slab.	1, 2	U
12. Define nominal cover to reinforcement in slab, footing, column and beam in moderate condition.	1, 2	R
13. Define max. and min. % of reinforcement required in beam.	1, 2	R
14. Define (1) Balance section (2) Under reinforced section (3) Over reinforced section	1, 2	R
15. Explain types of Load. List out various IS codes used for calculation of loads.	1, 2	R

TUTORIAL-2

BEAMS

		COs	LEVEL
	(a) Singly Reinforced Beam		
1.	For a limiting section 300 mm X 600 mm gross Determine the following if M:20	3,5	Ε
	concrete mix and fy = 415 N/mm^2 steel is used		
	(i) Maximum compressive stress and maximum tensile stress,		
	(ii) Lever arm, (iii) Total compression, (iv) Total tension, (v) Limiting moment,		
	(vi) Area of tensile steel.		
2.	A RCC beam rectangular in section 230 mm X 450 mm effective is singly	3,5	Ε
	reinforced by 4 no. of 16 mm dia. Bars of $fe - 415$ grade steel and M:20 grade of		
	concrete. Determine moment of resistance of section.		
3.	Determine moment of resistance for a beam 230 mm X 350 mm overall size and	3,5	E
	effective cover 40 mm. The beam is reinforced with 5 no. 16 mm dia. Bars take		
	$fck = 20 N/mm^2$, $fy = 415 N/mm^2$.		
4.	A singly R.C. beam effective section 300 mm X 600 mm, provide with	3,5	Ε
	$3 - 20 \Phi + 3 - 16 \Phi$ at effective cover of 50 mm is simply supported 4.50 m.		
	span. Use fck = 20 N/mm ² , fy = 415 N/mm ² . Evaluate safe load (L.L.) on beam.		
5.	Design singly R.C. balance section for factored moment 225 kNm. Use Fe – 415	4, 5	С
	steel and M:20 grade of concrete. Take width to effective depth ratio for the beam		
	0.70.		
6.	Design singly R.C. beam having width 230 mm, simply supported with effective	4, 5	С
	span of 4.00 m. it is loaded with a U.D.L. of 15 kN/m excluding self weight. Use		
	M:20 grade concrete and Fe $-$ 415 steel. Check the beam for max. and min. steel		
	and deflection.		
7.	Explain Stress -Strain diagram for singly Reinforced concrete beam. Derive	1, 2	R
	equation of Moment of Resistant for balanced section.		
8.	Determine the moment of resistance of a beam section 230 mm X 600 mm	3, 5	Ε
	effective depth reinforced with 3 nos. 25 mm diameter bars. M:20 grade concrete		
	and Fe – 250 steel reinforcement is used. Also find out the moment of resistance		
	if the materials are M:20 and Fe $-$ 415. Comment on the answer.		
	(b) Doubly Reinforce Beam		
1.	Explain necessity of doubly R.C. beam	3, 4	U
2.	Explain stress diagram for doubly R.C. beam.	3,4	U

3.	A doubly reinforced beam of 300 mm X 600 mm overall is reinforced with	3, 5	Ε
	5 – 16 Φ bars as compression reinforcement and 5 – 20 Φ bars as tensile		
	reinforcement. Effective cover on both sides is 50 mm, grade of concrete M:25		
	and steel Fe - 415. Determine (i) Types of section, (ii) Moment resistance		
	capacity of the section.		
4.	A rectangular beam of size 200 mm X 350 mm effective depth is subjected to a	3, 5	Е
	factored moment of 150 kNm. Determine the reinforcement for flexure. The		
	effective cover for the tensile and compression steel are 50 mm. The materials are		
	M:25 grade concrete and HYSD reinforcement of grade Fe – 415.		
5.	Evaluate the area of tensile and compression reinforcement required for a	3, 5	Ε
	rectangular beam of size 230 mm X 500 mm effective for the factored moment of		
	325 kNm. The effective cover for the tensile and compression steel are 50 mm.		
	The materials are M:20 grade concrete and HYSD reinforcement of grade		
	Fe – 415.		
	(c) <u>T Beam</u>		
1.	A R.C.C. T – beam section reinforce for tension has the following data, Flange	3, 5	Е
	width = 1600 mm, Thickness of Flange = 125 mm, Effective depth = 700 mm,		
	Width of rib = 325 mm, Determine the limiting moment of resistance of the		
	section. Take M:20 concrete and Fe – 415 steel.		
2.	Calculate limiting value of moment of resistance (M.R.) of T – beam with the	3, 5	Ε
	following data, Flange width = 1900 mm, Depth of Flange = 130 mm, Effective		
	depth of beam = 550 mm, Width of web = 300 mm, Take M:20 concrete and		
	Fe – 415 steel 4 no. of 25 mm dia.		
3.	Determine moment of resistance (M.R.) of T – beam with the following data,	3, 5	Е
	Flange width = 1500 mm, Depth of Flange = 115 mm, Effective depth of		
	beam = 425 mm, Width of web = 300 mm, Take M:20 concrete and Fe $-$ 415		
	steel 5 no. of 20 mm dia.		
4.	Determine moment of resistance (M.R.) of T – beam with the following data,	3, 5	Ε
	Flange width = 1500 mm, Depth of Flange = 115 mm, Effective depth of		
	beam = 425 mm, Width of web = 300 mm, Take M:20 concrete and Fe $-$ 415		
	steel 5 no. of 20 mm dia.		

TUTORIAL-3

SLABS

		COs	LEVEL
1.	Explain various types of slabs with sketch.	3, 4	U
2.	Design and detail simply supported slab on 300 mm wide brick masonry for a clear	4, 5	С
	room size 4.00 m X 10.00 m. use material grade M:20 and Fe $-$ 415. Take live load		
	as 3.5 kN/m^2 and floor finish as 1 kN/m^2 .		
3.	Design for the slab of the hall of school building 10.00 m X 8.00 m with provision	4, 5	С
	of two intermediate beams 300 mm X 500 mm at a clear distance of 3.50 m. the		
	slab is resting on four walls of 300 mm thick and carrying live load of 3.50 kN/m^2 .		
	Show the details of reinforcement for the slab by sketch. Use $M:20$ and $Fe - 415$.		
4.	A one-way continuous slab of 150 mm thickness resting on 300 mm wide brick	4, 5	С
	masonry supports spaced at 4.00 m c/c. considering live load as 2.50 kN/m^2 and		
	floor finish as 1.00 kN/m ² . Design and detail slab for span moment and support		
	moment. Assume four spans of the slab. Take M:20 grade of concrete and Fe -415		
	grade of steel.		
5.	The 1 m wide single flight R.C.C. stair case is to be provided for a height of 2.60 m	3, 4, 5	Ε
	in a residential building. Staircase is supported at top and bottom risers by beams		
	300 mm wide. Waist slab is 180mm thick. Riser 200 mm and tread is 300 mm.		
	Evaluate effective span, design load, reinforcement in waist slab. Prepare of		
	sketch use M:20 and Fe $-$ 415.		
6.	Design a simply supported slab of 3.00 X 4.50 m effective span supported on	4, 5	С
	300 mm thick walls on all four sides. Assume live load 3.00 kN/m^2 and floor finish		
	load 0.50 kN/m ² . Use M:20 and Fe – 415. Corners are not held down.		
7.	Design and detail Reinforced Concrete slab for a room 6.00 m X 5.00 m. The slab	4, 5	С
	is to be cast monolithically over beams with corners held down. The width of		
	supporting beams 230 mm. Slab carries superimposed load of 3.00 kN/m ² . Use		
	M:20 and Fe $- 415$.		

TUTORIAL – 4 COLUMN

	COs	LEVEL
1. Classify various types of columns based on its (a) Shape, (b) Bracing system, (c)	3, 4	U
Lateral and longitudinal reinforcement, (d) Effective Length of column,		
(e) Types of loading.		
2. State the assumptions in design of compression member.	3	R
3. A reinforced shot column of 400 mm X 450 mm in cross section is to carry an	3, 5	E
axial factored load of 1680 kN. Calculate the area of steel required and the		
spacing of 8 mm dia. Lateral ties. Use concrete M:20 and steel Fe - 415. Give		
detail sketch of the section.		
4. A short RCC rectangular column of 300 mm X 450 mm is reinforced with 6 no.	3, 5	Е
Of longitudinal bars (4 no. of 25 mm dia. And 2 no. of 20 mm dia). Determine		
load carrying capacity of the column if M:25 mix and Fe $-$ 415 steel is used also		
design the column for lateral ties. Check the column for minimum eccentricity.		
Unsupported length of column is 3.20 m. Give detail sketch of the section.		
5. Design rectangular RC column for an axial load 1500 kN use M:20 concrete and	4, 5	С
Fe - 415 steel also check for eccentricity, unsupported length of column is		
3.50 m.		
6. Design a short circular column for an axial compressive factored load of 950 kN.	4, 5	С
The grade of concrete M:25 steels $Fe - 415$ it is to be provided with minimum		
reinforcement sketch the detail.		

TUTORIAL – 5 FOOTING

				COs	LEVEL
1.	A rectangular colu	mn of size 230 X 600 mm is l	oaded with 900 kN characteristic	3, 4, 5	Ε
	load. The safe bearing capacity of soil is 200 KN/m ² . Determine the dimension				
	of the footing for the	ne following cases.			
	a. If footing is squ	are.			
	b. If the footing ha	s equal projection in all four s	sides.		
	c. If the dimension	n parallel to the shorter side of	column is restricted to 2.00 m.		
	d. If the dimension	n parallel to the longer side is	restricted to 2.50 m.		
2.	Design an isolated	square pad footing for a squ	are column 300 X 300 mm for	4, 5	С
	axial load of 1700	kN. Use concrete grade M:25	5 and Fe – 415 steel grade. Take		
	safe bearing capaci	ty of soil - 140 kN/m ² . Also d	raw neat sketch.		
3.	Design a rectangul	ar isolated sloped footing for	a column of size 230 X 600 mm	4, 5	С
	carrying an axial cl	haracteristic load of 1800 kN	and reinforced with 8 nos 20 dia.		
	Bars in M:25 gr	ade concrete. The allowabl	e bearing pressure on soil is		
	250 kN/m ² . The	materials for footing are gr	ade M:25 concrete and HYSD		
	reinforcement of g	rade Fe – 415.			
4.	Determine the pla	an dimensions of a combined	l footing for two axially loaded	3, 4, 5	E
	columns with follo	owing data if (1) Width is no	ot restricted, considering 1.00 m		
	projection from C1 (2) Width is restricted to 2.30 m. Assume self weight of				
	footing is 15% of a	xial loads.			
	Columns	C1	C2		
	Туре	Interior	Interior		
	Size	400 mm X 400 mm	400 mm X 400 mm		
	Р	1000 kN	1200 kN		
	Spacing	3.00 m c/c fr	rom C1 to C2		
	SBC/ABP	150 kN/m ² a	t 1.6 m depth		
	5. Design a combi	ne rectangular footing for 120	0 kN and 1800 kN column loads	4,5	С
	spaced at 4.00 m. centre to centre. Consider following data for the design.				
•	Size of each column 450 mm X 450 mm, SBC = 250 kN/m^2				
•	Use M:20 concrete	and Fe – 415 grade steel			

TUTORIAL – 6

BOND, DEVELOPMENT LENGTH AND SHEAR REINFORCEMENT

		COs	LEVEL
1.	Explain anchoring of reinforcement.	3	U
2.	A simply supported R. C. C. beam with clear span of 5.00 m, support width	3, 4, 5	С
	230 mm, size of beam 230 wide and 420 mm deep, tension bars as		
	4 nos. of 16 mm dia. bars and clear cover of 25 mm. If it is loaded by an all		
	inclusive factored udl of 60 kN/m, Design the shear reinforcement near support		
	only using 2 legged 6 mm. mild steel stirrups.		
3.	Explain various types of shear reinforcement with sketch.	3	U

PART – B TUTORIAL – 7 to 10 (Steel Structures)

TUTORIAL – 7

INTRODUCTION & TENSION MEMBER

		COs	LEVEL
1.	Write down various advantages and disadvantages of steel structure.	3, 4	R
2.	List out series of rolled steel (i) I-sections, (ii) Channel section, and (iii) Angle	3, 4	R
	sections.		
3.	Explain the advantages of bolted connections over riveted or welded connections.	3, 4	U
4.	Elaborate the effect of shear leg in tension member with necessary sketch.	3, 4	С
5.	Determine the design tensile strength of the plate 200 mm X 12 mm with the holes	3, 5	Ε
	for 16 mm diameter bolts as shown in figure -1 Steel use is of Fe -415 grade		
	quality.		
	$\leftarrow \qquad \qquad$		
6.	A single unequal-leg angle 90 X 60 X 6 mm is connected to a 10 mm thick at the	3, 5	E
	ends with 5 no. of bolts of 16 mm diameter bolts to transfer tensile force. Determine		
	the design tensile strength of the angle. (i) if gusseted plate (G.P.) is connected to		
	90 mm angle, (ii) if G.P. is connected to 60mm angle		
7.	Design and detail a connection for a truss member 2 ISA 60 X 60 X 8 mm connected	4, 5	С
	back-to-back on both the sides of a 10 mm thick gusset plate using M:20 bolts of		
	property class 4.6 grade. The axial tensile factored load in the member is 150 kN.		
8.	Determine the tensile strength of a roof truss diagonal 100 X 75 X 6 mm having	3, 5	Ε
	fy = 250 MPa connected to gusset plate by 4 mm welds of 140 mm long at top and		
	310 mm long at bottom. The longer edge of 100 mm was connected to plate of 8 mm		
	thickness.		
9.	Design a lap joint and butt joint between two plates each of width 120 mm. If the	4, 5	С
	thickness of one plate is 16 mm and other is 12 mm. the joint has to transfer a design		
	load of 160 kN. Plates are of Fe – 410 grade. Calculate the efficiency of the joint.		
	Assume 4.6 grade bolts.		
10	. Design a single angle section for a tension member of a roof truss to carry a factored	4, 5	С
	tensile force of 225 kN. Take length of member 3.00 m. use M:20 mm shop bolt of		
	grade 4.6.		

TUTORIAL – 8

COMPRESSION MEMBER, LACING AND BATTENING

		COs	LEVEL
1.	Explain different end conditions of columns with their effective length.	3, 4	U
2.	Distinguish between behavior of short and long compression members.	3, 4	Ν
3.	Explain IS 800 recommendations for compression member in trusses.	3, 4	U
4.	Design axial load capacity of the column ISHB 300 @ 577 N/m if the length of	4, 5	С
	column is 3.00 m and its both ends pinned.		
5.	Calculate the compressive resistance of a compound column consisting of	3, 5	E
	ISHB 300 with one cover plate 350 X 20 mm on each flange and having a		
	length of 5 m. assume that bottom of the column is fixed and top is pinned,		
	fy = 250 MPa		
6.	Determine axial compressive load carrying capacity of a 2.30 m long single	3, 5	Ε
	angle strut ISA 75 X 50 X 8 mm. The longer leg is connected to the gusset plate		
	with two bolts at each end. Assume hinged condition.		
7.	Calculate compressive strength of 2 ISA 80 X 80 X 8 mm placed on either side	3, 5	Ε
	of gusset plate 8 mm thick with effective held in position at both ends but		
	restrained against rotation at one end. The length of member is 3.00 m and		
	fy = 250 MPa.		
8.	Design a single angle strut connected to the gusset plate to carry 180 kN	4, 5	С
	factored load. The length of the strut between centre to centre inter section is		
	3.00 m.		
9.	Explain laced and battened columns with sketch.	3, 4	U
10	. Design a laced column with two channels back to back of length 10m to carry	4, 5	С
	an axial factored load of 1400 kN. The column may be assumed to have		
	restrained in position but not in direction at both ends (hinged ends).		
11	. Design a column to carry an axial factored load of 1200 kN. The actual length	4, 5	С
	of column is 6.00 m with both ends effectively held in position and restrained		
	against rotation. Select two channels back to back. Assume that the column is		
	laced and $fy = 250$ MPa.		
12	. Design a single lacing system for a column composed of 2 ISMC 300 @ 35.8	4, 5	С
	kg/m placed back to back at clear spacing of 200 mm. axial factored load on		
	column is 1500 kN. Effective length of column is 5.00 m.		

TUTORIAL – 9 STEEL BEAM

		COs	LEVEL
1.	Design a simply supported steel beam of 7.00 m spam carrying a RC floor	4, 5	С
	capable of providing lateral restraint to the top compression flange. The		
	total factored U.D.L. subjected was 53.60 kN/m throughout and factored		
	point load act at centre as 150 kN. Use ISMB section. Perform the check		
	for web buckling only.		
2.	A roof of a hall measuring 8.00 m X 12.00 m consist of 100 mm thick R.C.	4, 5	С
	slab supported on steel I – beams spaced 3.00 m apart. The finishing load		
	may be taken as 1.50 kN/m ² and live load as 2.00 kN/m ² . Design the steel		
	beam.		
3.	Design a uniform section for Moment and shear capacity of two spans	4, 5	С
	simply supported continuous beam ABC. Span AB is of 4.00 m length and		
	carries a central concentrated load of 150 kN and span BC is of 6.00 m		
	length and carries a central concentrated load of 200 kN. Assume the beam		
	is to be laterally supported. Adopt plastic design procedure.		
4.	Determine the maximum uniformly distributed load that can be carried by	3, 5	Ε
	a laterally unrestrained ISMB 300 simply supported beam of 2.50 m		
	effective length.		
5.	A simple support beam is laterally supported over the span of 8.00 m and	4, 5	С
	loaded by a super imposed load of 30 kN/m over the entire span and 100		
	kN and centre. Design the beam using ISMB section and check for all the		
	safety.		
6.	A beam of ISMB 550 has simple support span of 9.00 m and is laterally	3, 5	Ε
	supported at centre only. Calculate the maximum all-inclusive factored udl		
	it can support.		
7.	Design an I – section purlin for an industrial building to support a	4, 5	С
	galvanized corrugated iron sheet roof. Given data: Spacing of the trusses		
	= 5.00 m, Spacing of purlins = 1.50 m, Inclination of main rafter to		
	horizontal = 30 degree, Weight of galvanized sheets taking into account		
	laps and connecting bolt = 130 N/m ² , Imposed snow load = 1.50 kN/m^{2} ,		
	Wind load = 1.00 kN/m^2		
8.	Calculate the moment carrying capacity of a 3.00 m long ISMB 350 beam	3, 5	Е
	which has full torsional restraint and no warping restraint at ends only.		
	(Laterally unrestrained beam).		

TUTORIAL – 10

Slab Base and Gusseted Base

		COs	LEVEL
1.	Explain the design procedure of base plate.	3, 4	U
2.	Explain the design procedure of gusseted base.	3, 4	U
3.	Design a column base for a factored axial compressive load of 700 kN and	4, 5	С
	a factored Bending moment (B.M.) of 150 kNm about major axis. The		
	column section provided is ISHB 400 @ 806.4 N/m. Design the anchor		
	bolts also, if required. The bearing pressure from concrete may be assumed		
	to be 6.00 kN/m^2 .		
4.	Design a column cap for a truss transferring a reaction of 120 KN to a	4, 5	С
	column section ISHB 450 @ 907.43 N/m.		

PART – C

TUTORIAL – 11

(R.C.C. and Steel Structures)

TUTORIAL-11

1. Prepare a sketch book with at least 20 sketches of different RCC and Steel members with detailing.