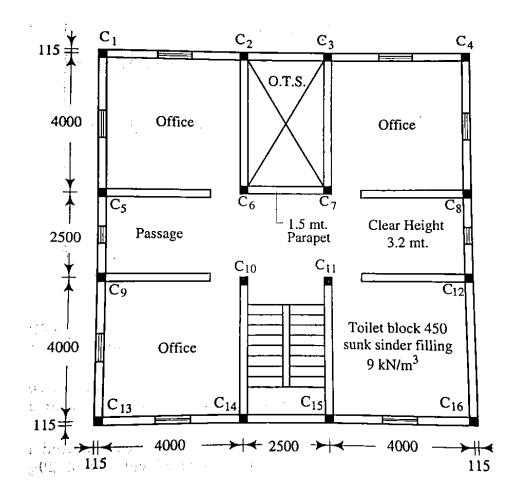
Tutorials/Practical for Design of Reinforced Concrete Structures (Program Elective II) (3160612) OR Design of Reinforced Concrete Structures (2960604) B.E. Semester 6 (Civil) P.D.D.C. Semester 6 (Civil)

Engineering College


Directorate of Technical Education Gandhinagar, Gujarat APPLIED MECHANICS DEPARTMENT

Shantilal Shah Engineering College, Bhavnagar

	Tutorial- I Building Layout and Design	
	Answer the following	Mapped
		With
1	Explain the flow of loads in a Building. Also define a framed structure.	CO2
2	What are secondary and main beams? How will you calculate self weight of slab	CO1 &
	and beam?	CO2
3	List down the guidelines for preparing the structural layout of the building taking	CO1 &
	into consideration the economy and aesthetic features. Also explain the guidelines for positioning and orientation of column in framed structure.	CO2
4	Determine the wind forces for an elevated Intze water tank for the design life of 100	CO1 &
	years. The data of tank are: Unight of tank $= 22$ m which includes beight of supporting staff $= 22$ m and height	CO2
	Height of tank = 32 m which includes height of supporting staff = 23 m and height of bottom conical dome = 2.5 m	
	Height of central cylindrical portion $= 5$ m and Rise of conical dome $= 1.5$ m	
	Diameter of supporting staff = 5 m and cylindrical portion = 12 m	
	Tank is located at Rajkot having terrain category II with class B type of structures.	
	The ground at which water tank located having slope $1V:8H$ and hill height = 320	
5	m. The water tank is located from crest 100m in windward direction. A multi-storeyed building of $G + 8$ is located at Vadodara. The plan dimensions of	CO1 &
5	The building are $32 \text{ m x} 36 \text{ m}$, having bay width of 4 m in each direction. The height	
	of each floor is 3 m and the height of parapet wall is 1 m. The building is located in	CO2
	terrain category II, where it is located on hill having ground slope is 120. The	
	height of hill is 1000 m and the building is located 250 m in windward direction	
	from crest. The design life of building is 50 years. Draw wind pressure diagram. Also find the wind force at nodal points.	
6	Prepare structural layout of the typical floor plan given below. Design G+3 building	CO1,
	manually and make detailing in A2 size drawing sheet covering all required details	CO2 &
	in structural drawing. Live load on terrace = 1.5 kN/m^2 and on floor = 4 kN/m^2 .	CO 5
	Assume floor height = 3.5 m and all floor slab thickness = 130 mm. Make detailing	05
	for all beams, columns, slabs and foundation with staircase. Students can use	
	spreadsheet for the design purpose.	

Tutorial- I Building Layout and Design

Design the same building using any of the structural software. Minimum one continuous beam, slab, column and footing manual calculation should be verified with the software results.

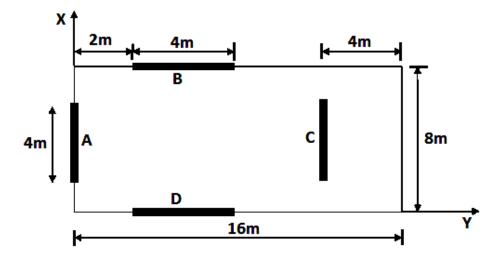
	Answer the following	Mapped
		With
1	Define Retaining wall. Explain the purpose of the retaining wall.	CO3
2	Discuss briefly various types of retaining walls and situations where a particular type is used.	CO3
3	When is the counterfort retaining wall preferred as a structure? Also explain the structural behaviour of counterforts in a counterfort retaining wall.	CO3
4	State the stability checks in design of retaining wall.	CO1 &
		CO3
5	Design and detail in A2 size drawing sheet for a cantilever retaining wall to retain the	CO1,
	earth 4.2 m high for the following data:	CO3 &
	Top surface is horizontal behind the wall. Unit weight of soil = 17 kN/m^3 ,	CO5
	Angle of internal friction = 30° ,	
	safe bearing capacity = 150 kN/m^2 ,	
	Coefficient of friction between base and soil = 0.55 . Use M20 –Fe 415.	
6	Design a counterfort retaining wall has a height of retaining earth of 6.2 m.	CO1,
	Top surface is horizontal behind the wall.	CO3 &
	Unit weight of soil = 16.2 kN/m^3 , Angle of internal friction = 30^0 ,	CO5
	safe bearing capacity = 150 kN/m^2 ,	
	Coefficient of friction between base and soil = 0.6 . Use M20 –Fe 415.	

Tutorial- II Design of Retaining Wall

	I utoriai- III Design of water Tank	
	Answer the following:	Mapped With
1	Design and draw the reinforcement details for an underground circular tank for the following data: Diameter of the tank is 5.0 m; Depth of water is 2.5 m. The wall and base slab are not monolithic with each other. Use M30 grade of	CO1, CO3 & CO5
2	concrete and Fe415 grade of steel for design of the tank. Design and draw the reinforcement details a circular tank with fixed base for capacity of 4 Lacs litres. The depth of water is to be 4m including free board of 0.25 m. Assume $\mu = 0$ and the tank is free at the top and rest on the ground. Use M30 – Fe415	CO1, CO3 & CO5
3	Design and draw the reinforcement details an overhead intze tank with a capacity of 7 Lacs Litres with Frame type of staging. Height of staging above ground level = 15 m	CO1, CO3 & CO5
4	Design and draw the reinforcement details for an underground rectangular water tank for the following data: Dimensions of the tank is 4m x 10m x 3m; The subsoil consists of sand having angle of repose of 30 ⁰ and saturated unit weight of 17 kN/m ³ . The water is likely to rise up to ground level.	CO1, CO3 & CO5
	weight of 17 kin/m ² . The water is likely to rise up to ground level.	

Tutorial- III Design of Water Tank

	Answer the following:	Mannad
	Answer the following.	Mapped
		With
1	Explain direct design method for design of flat slab. State limitations of direct	CO1 &
	design method.	CO3
2	Write short note on equivalent frame method.	CO1 &
		CO3
3	Design an interior panel of a flat slab of size 5 m \times 5 m without providing drop	CO1, CO3
	and column head. Size of column is 400 mm \times 400 mm and live load on the panel is 3.5 kN/m ² . Take floor finish load as 1.4 kN/m ² . Use M25 concrete and Fe 415 steel.	& CO5
4	Design an interior panel of a flat slab with panel size $6 \text{ m} \times 6 \text{ m}$ supported by	CO1 CO3
4	Design an interior panel of a flat slab with panel size $6 \text{ m} \times 6 \text{ m}$ supported by	CO1, CO3
	columns of size 500 mm \times 500 mm. Provide suitable drop and column head. Take live load as 4.2 kN/m ² and floor finish load as 1.5 kN/m ² . Use M25	& CO5
	concrete and Fe 415 steel.	


Tutorial – IV Design of Flat Slab

Tutorial – V Earthquake Resistant Design of Building Answer the following:

	Answer the following:	Mapped
		With
1	Explain Earthquake resistant design philosophy and Explain four virtues of	CO4
	Earthquake Resistant design	
2	Explain the following provisions for ductile detailing as per IS:13920.	CO1 &
	(i) Grade of concrete and type of steel	CO 4
	(ii) Diameter of stirrups.	00 +
	(iii) Ductile detailing of beam	
	(iv) Ductile detailing of column	
	(v) Requirements of Shear wall	
3	Draw and neatly detail reinforcement detailing (ductile) of three span reinforced	CO1 &
	concrete continuous beam of dimension 400 mm x 600 mm as per IS 13920.	CO 4
4	A 4-storeyed RCC building having a plan area of 20 m x 20 m. The plan in X and	CO1 &
	Z direction comprises of 4 bays each of 5.0 m. The building is located in Bhuj.	CO 4
	The soil condition is medium stiff and entire building is on raft foundation. RC	001
	frames are infilled with brick masonry. The lumped weight due to dead loads is 12	
	kN/m^2 on floors and $8kN/m^2$ on roof. The live load is $3.5 kN/m^2$ on floors and 2.5	

- 3.0 m. Determine the Design Seismic force and shear at each level using Seismic Coefficient Method.
- **5** Determine lateral load distribution for a floor with shear walls as shown in Figure CO 4 below. A earthquake lateral force of value "P" kN acts in Y-direction.

kN/m² on roof. Ground storey height is 4.5 m and other three stories are each of

References:

- Reinforced concrete, Vol I Part I & II, H. J. Shah, Charotar Publishing House Ltd. Anand, Year 2021
- Reinforced concrete, Vol II, H. J. Shah, Charotar Publishing House Ltd. Anand, Year 2021
- RCC Designs, B.C.Punamia; Laxmi Publication Pvt. Ltd., New Delhi, Year 2023
- Limit State Design of Reinforced Concrete Structures, B.C.Punamia, A. K. Jain and Arun Jain, Laxmi Publication Pvt. Ltd., New Delhi, Year 2023
- Earthquake resistant of design of structures, Pankaj Agrawal and Manish Shrikhande, PHI learning Pvt. Ltd., New Delhi, Year 2009.