Tutorials for

Structural Analysis – I (3140603)

B.E. Semester - 4 (Civil Engineering)

Shantilal Shah Engineering College, Bhavnagar

Directorate of Technical Education Gandhinagar, Gujarat

Shantilal Shah Engineering College, Bhavnagar

Certificate

This is to certify that Mr./Ms.					
Enrollment No.	of E	3.E.	Semes	ter 4	th Civil
Engineering of this institute (GTU	Code	: 043	<u>3</u>) has	satist	factorily
completed the tutorial work for the	subject	t Str	uctural	Analy	ysis – I
(3140603) for the academic year				_•	
Place: Bhavnagar					
Date:					
Name and Sign of Faculty member					

Head of the Department

Name of Student :

Enrollment Number:

 $\begin{tabular}{ll} Name of Subject & : & Structural Analysis-I \\ \end{tabular}$

Subject Code : 3140603

INDEX

Sr.	Doublele	Date of	Date	Page No.		C	Sign of
No.	Particulars	Issue	of Submission	From	То	Grade	Faculty
1	Fundamental of Statically Determinate Structures						
1.1	Basics	05/02/2024	22/02/2024				
1.2	Framed Structures	05/02/2024	22/02/2024				
1.3	Arches & Cables	05/02/2024	18/04/2024				
1.4	Thin cylinder	05/02/2024	18/04/2024				
2	Strain Energy & Displacement of Statically Determinate Structures						
2.1	Strain Energy	05/02/2024	21/02/2024				
2.2	Displacement of Determinate Beams	05/02/2024	16/05/2024				
3	Direct and Bending Stresses + Column & Struts						
3.1	Direct and Bending Stresses	05/02/2024	14/02/2024				
3.2	Columns and Struts	05/02/2024	02/05/2024				
4	Statically Indeterminate Beams	05/02/2024	09/05/2024				

Assignment No: 01 Unit:1 - Fundamental of Statically Determinate
Structures

Sub Code 3140603 Title of Subject STRUCTURAL ANALYSIS - I

#	Questions				
	Basics				
1	Describe with illustrations types of statically determinate and indeterminate structures.				
2	Define SI & KI.				
3	Write Maxwell's reciprocal theorem and Principle of superposition.				
4	Find static and kinematic indeterminacy for the structures shown below. Also comment about stability.				

	My served
	Thin cylinder
11	A cylindrical pipe of diameter 1.5m and thickness 15mm is subjected to an internal fluid pressure
	of 1.2 N/mm ² . Determine longitudinal stress and circumferential stress developed in the pipe.
12	A thin cylinder of internal diameter 1.25m contains a fluid at an internal pressure of 2N/mm ² .
	Determine the maximum thickness of the cylinder if: (i) the longitudinal stress is not to exceed
	30N/mm ² (ii) the circumferential stress is not to exceed 45 N/mm ² .

Assignment No: 02		No: 02	Unit:2 - Strain Energy & Displacement of Statically Determinate Structures		
Date: 05/02/2024		5/02/2024			
Sub Cod	e	3140603	Title of Subject	STRUCTURAL ANALYSIS - I	

#	Questions
	Strain Energy
1	Define: Resilience, Proof resilience and Modulus of resilience.
2	Find an expression for the strain energy stored in a body when
	(i) The load is applied with impact (ii) The load causes bending
3	A steel rod is 3.00 m long and 50 mm in diameter. An axial pull of 100 kN is applied to the rod.
	Calculate (i) Stretch in the rod, (ii) Stress in the rod, (iii) Strain energy absorbed by the rod.
	If 80 kN load is suddenly applied, determine (i) Instantaneous stress induced, (ii) Instantaneous
	elongation produced in the rod, (iii) Strain energy absorbed by the rod. Take $E=200~\text{GN/m}^2$.
4	A uniform metal bar has a cross-sectional area of 700 mm ² and a length of 1.5 m. If the stress at the
	elastic limit is 160 N/mm ² , what will be its proof resilience? Determine also the maximum value of
	an applied load, which may be suddenly applied without exceeding the elastic limit. Calculate the
	value of the gradually applied load which will produce the same extension as that produced by the
	suddenly applied load above. Take $E = 2 \times 10^5 \text{ N/mm}^2$.
5	A weight of 15 kN falls by 30 mm on a collar rigidly attached to lower end of a vertical bar 4.00 m
	long and 1000 mm ² in section. The upper end of the vertical bar is fixed. Find the instantaneous
	expansion, stress and energy absorbed by the bar. Find also impact factor.
	Take $E = 200$ GPa.
6	Find the strain energy in a simply supported beam of "L" m length, carrying uniformly distributed
	load "w" kN/m run. Assume uniform flexural rigidity.
7	Find the strain energy of cantilever beam of 3.00 m length, carrying point load of 50 kN at free end.
	Take $E = 2 \times 10^5 \text{ N/mm}^2$, $I = 4 \times 10^6 \text{ mm}^4$.
8	A tension bar is made up of 5.00 m long is made up of two parts, 3.00 m of its length has a cross
	sectional area of 10 cm ² while remaining 2.00 m has cross sectional area of 20 cm ² . An axial load of
	80 kN is gradually applied. Find the total strain energy produced in the bar and compare this value
	that obtained in a uniform bar of the same length and having same volume when under the same
	load. Take $E = 2 \times 10^5 \text{ N/mm}^2$.

Displacement of Determinate Beams

- Obtain the differential equation given below for the deflection curve of a beam stating clearly assumptions made in deriving it. $\frac{d^2y}{dx^2} = \pm \frac{M}{EI}$
- 2 | State and explain moment area theorems with neat sketches.
- What is conjugate beam? Differentiate between real beam and conjugate beam. Justify the support condition in conjugate beam.
- Find out the quantities asked by using Macaulay's method for the beams shown in figure 1 to 4. $E = 200 \text{ kN/mm}^2$ and $I = 3 \times 10^8 \text{ mm}^4$

Figure - 1

10kN

20kN/m

A

20kN/m

A θ_{A_s} θ_{C_s} θ_{C_s} θ_{A_s} θ_{A_s} Figure - 3

Figure - 4

Find out the quantities asked by using Moment area method for the beams shown in figure -5 to 8. $E = 200 \text{ kN/mm}^2$ and $I = 3 \text{ X } 10^8 \text{ mm}^4$.

Find out the quantities asked by using Conjugate beam method for the beams shown in figure -9 to 12. $E = 200 \text{ kN/mm}^2$ and $I = 3 \times 10^8 \text{ mm}^4$.

- Find the deflection at the free end of cantilever of span "l" subjected to point load "P" at free end by equating strain energy to work done.
- Find the deflection under the load in simply supported beam of span 4.00 m subjected to eccentric point load of 40 kN at 1.00 m from end "A" by equating strain energy to work done.

Assignment No: 03
Date: 05/02/2024
Unit:3 - Direct and Bending Stresses + Column & Struts
Sub Code 3140603
Title of Subject STRUCTURAL ANALYSIS - I

#	Questions				
	Direct and Bending Stresses				
1	Distinguish between direct and bending stress.				
2	Obtain a relation for the maximum and minimum stresses at the base of a symmetrical column				
	when it is subjected to a) An eccentric load about one axis, b) An eccentric load about two axis.				
3	Explain kernel of a section. Show that for no tension at the base of a short column, the line of				
	action of the load should be within the middle third.				
4	Draw a neat sketches of Kernel of following cross-section:				
	a) Rectangular 200 mm X 300 mm				
	b) Hollow circular cylinder with external diameter = 300 mm, thickness = 50 mm				
	c) Square with 600 cm ² area				
5	A hollow rectangular column is having external and internal dimensions as 120 cm deep X 80 cm				
	wide and 90 cm deep X 50 cm wide respectively. A vertical load of 200 kN is transmitted in the				
	vertical plane bisecting 120 cm side and at an eccentricity of 10 cm from the geometric axis of				
	the section. Calculate the maximum and minimum stresses in the section.				
6	A rectangular pier of 1.50 m X 1.00 m is subjected to a compressive load of 450 kN with as				
	shown in figure. Find the stress on all four corners of the pier.				
	D Y C				
	0.25 m				
	0.25 m				
	A J B				
7	A masonry dam of rectangular cross-section 12.00 m high and 5.00 m wide has water up-to the				
	top on its one side. If the density of masonry is 2300 kg/m ³ , find				
	a) Pressure force due to water per meter length of dam,				
	b) Resultant force and the point at which it cuts the base of dam				
	<u> </u>				

श्रीबः क	म् वीस्ता
	c) The maximum and minimum stress intensities at the base of the dam
8	A trapezoidal masonry dam is of 20.00 m height. The dam is having water up-to a depth of 16.00
	m on its vertical side. The top and bottom width of the dam are 3.00 m and 9.00 m respectively.
	The density of the masonry is given as 2000 kg/m ² . Determine
	a) The resultant force on the dam per meter length
	b) The point where the resultant cuts the base
	c) The maximum and minimum stress intensities at the base
	Columns and Struts
1	A strut 2.50 m long is 60 mm in diameter. One end of the strut is fixed while its other end is
	hinged. Find the compressive load for the member using Euler's formula, allowing a factor of
	safety of 3.5. Take $E = 2.10 \text{ X } 10^5 \text{ N/mm}^2$.
2	Calculate the critical load for a strut which is made of a bar circular in section and 5.00 m long
	and which is pin jointed ant both ends. The same bar when freely supported gives a mid span
	deflection of 10 mm under a load of 80 N at the centre.
3	A steel column of "I" section ISHB 300 is used as a column 4.00 m long with both ends hinged.
	Determine Euler's critical load for the column. If the section is strengthened by a cover plate of
	310 mm X 8 mm for each flange. What would be Euler's critical load? Take for the "I" section
	area = 7485 mm ² , $I_{xx} = 1.2545 \text{ X } 10^8 \text{ mm}^4$, $I_{yy} = 2.1936 \text{ X } 10^7 \text{ mm}^4$, modulus of elasticity
	$E = 2 \times 10^5 \text{ N/mm}^2$.
4	A steel bar of rectangular section 30 mm X 40 mm pinned at each end is subjected to axial
	compression. The bar is 1.75 m long. Determine the buckling load and the corresponding axial
	stress using Euler's formula.
5	A round steel rod of diameter 15 mm and length 2.00 m is subjected to a gradually increasing
	axial compressive load. Using Euler's formula, find the buckling load. Find also the maximum
	lateral deflection corresponding to the buckling condition. Both ends of the rod maybe taken as
	hinged. Take $E = 2.1 \times 10^5 \text{ N/mm}^2$ and the yield stress of steel = 250 N/mm ² .
6	A hollow cast iron column 5.00 m long is fixed at both ends and has an external diameter of
	300 mm. The column supports an axial load of 1200 kN. Find the internal diameter of the
	column, adopting a factor of safety of 5. Take $f_c = 550 \text{ N/mm}^2$ and $\alpha = 1/1600$. $E = 200 \text{ GPa}$.
	l .

Assignment No:

04

Date:

05/02/2024

Unit:4 Statically Indeterminate Beams

Sub Code 3140603 Title of Subject

Title of Subject | STRUCTURAL ANALYSIS - I

