Assignments for

Soil Mechanics (Program Elective) (2940605)

BE Civil PDDC (Part Time) Semester IV

Directorate of Technical Education Gandhinagar, Gujarat

APPLIED MECHANICS DEPARTMENT

Shantilal Shah Engineering College, Bhavnagar

Even Semester. Term Dates: 01/02/2024 to 25/05/2024

Tutorial- I						
	Slope Stability					
	Answer the following	Mapped				
		With				
1	Differentiate between finite and infinite slopes.	CO1				
2	Explain different types of slope failure.	CO1				
3	Differentiate different types of the factor of safety used in the stability analysis of	CO1 &				
	slopes.	CO2				
4	A deep cut of 9 m has to be made in a clay with unit weight of 18 kN/m^3 and a	CO2 &				
	cohesion of 27 kN/m ² . A hard stratum exists at a depth 18 m below the ground	CO3				
	surface. Determine from Taylor's chart if a 30° slope is safe. If a factor of safety of					
	1.5 is desired, what is a safe angle of slope?					
5	A slope is to be laid at angle of 30° with horizontal. Find the safe height of the	CO2 &				
	slope for a factor of safety of 1.5 if the soil properties are C = 15 kN/m ² , \emptyset = 22°,	CO3				
	$\Upsilon = 18 \text{ kN/m}^3.$					
6	A new canal is excavated to a depth of 5 m below ground level, through a soil	CO3 &				
	having the following characteristics: $C=20 \text{ kN/m}^2$, $\emptyset=10^\circ$, $e = 0.8$ and $G = 2.80$.	CO4				
	The slope of banks is 1:1. Calculate the factor of safety with respect to cohesion					
	when the canal runs full. If it is suddenly and completely emptied, what will be the					
-	factor of safety? Taylor's stability number for this condition is 0.137	CO 2				
7	Calculate the factor of safety using Swedish circle method for a trial slip shown in	CO3,				
	following figure. The slip circle has radius 12 m and central angle /1°. The soli	CO4 &				
	properties are: $\mathcal{D}=30^\circ$, $C=20$ kiN/m ⁻ , $T=20$ kiN/m ⁻ .	COS				
	1					
	(6)					
	(3)					
	"INVINCE"					

Tutorial- II						
	Stress Distribution of Soils					
	Answer the following	Mapped With				
1	Give the comparison of Boussinesq and Westergaard analysis	CO1				
2	Explain the concept of pressure bulb. Plot the isobar of intensity 0.1Q	CO2				
3	Draw contact pressure diagram for flexible and rigid footing in saturated clay and	CO3 &				
	sand.	CO4				
4	A concentrated load 10 kN acts on the surface of a soil mass. Using Boussinesq	CO1 &				
	analysis find the vertical stress at points.	CO2				
	(i) 3 m below the surface on the axis of loading and					
	(ii) At radial distance of 2 m from axis of loading but at same depth of 3 m.					
5	Two railway wagon lines in a harbour yard are located 6 m centre to centre. The	CO4 &				
	average load per meter run in the lines are 100 kN/m and 80 kN/m. Find the vertical	CO5				
	stress induce by the loading at a depth of 2 m beneath each loading and half way					
	between them.					
6	Calculate the stress in a soil mass below the centre of a uniformly loaded circular area	CO4 &				
	of radius 1.5 m with a pressure of 60 kN/m^2 and obtain the exact depth at which the	CO5				
	stress reduces to 10% of the applied stress.					
7	An overhead water tank with a weight of 2800 kN is supported at a depth of 3 m	CO4 &				
	on a tower by four isolated square footing of sides 2 m each placed in a square	CO5				
	pattern with a centre to centre spacing of 8 m. Compute the vertical stress at					
	foundation level,					
	(i) at the centre of the structure					
	(ii) at the centre of each footing					

Tutorial- III						
	Sub surface Investigation					
	Answer the following:	Mapped With				
1	What do you understand by site investigation? What are the objectives of soil	CO1 &				
	exploration program?	CO2				
2	What is a significant depth? How it can be determined?	CO1 &				
		CO2				
3	Differentiate between disturbed and un disturbed soil samples. How undisturbed	CO2 &				
	samples are collected?	CO3				
4	Give brief description on area ratio, inside and outside clearance of a sample.	CO2 &				
		CO3				
5	Write the principles involved in geophysical methods and their limitations of soil	CO1 &				
	investigation.	CO4				
6	What are the limitations of a plate load test?	CO2 &				
		CO3				
7	Describe salient features of a good sub soil investigation report. Write a short	CO1 &				
	note on Bore log.	CO2				

	Tutorial – IV					
	Shear strength					
	Answer the following:	Mapped With				
1	What is Mohr's strength theory for soil? Sketch the typical envelop for clean sand pure clay and C- ϕ soil.	CO1 & CO2				
2	Explain various shear test based on different drainage conditions. Draw strength envelope for U-U, C-U and C-D test and comment on it.	CO1 & CO2				
3	What do you understand by pore pressure? Explain pore pressure under isotropic consolidation and under deviator stress condition.	CO1 & CO2				
4	What is a stress path? Sketch stress path for foundation loading and unloading conditions,	CO3				
5	In a tri axial shear stress conducted on a soil sample having a cohesion of 12 kN/m^2 . and angle of shearing resistance 36°. The cell pressure was 200 kN/m^2 . Determine the value of deviator stress at failure. Solve the problem by analytical and graphical method.	CO1 & CO4				
6	The stresses on a failure plane in a drained test on a cohesion less soil is as under: Normal stress (σ) = 100 kN/m ² and Shear stress (τ) = 40 kN/m ² .Determine: (i) the angle of shearing resistance and the angle which the failure plane makes with the major principal plane. (ii) Find the major and minor principal stresses.	CO2 & CO3				
7	The properties of soil in a 3 m high embankment are $C = 50 \text{ kN/m}^2$, $\emptyset = 20^\circ$ and $\gamma = 16 \text{ kN/m}^3$. Skempton's pare pressure parameters are found from tri axial test as A= 0.50 and B = 0.90. The height of embankment was raised from 3 m to 6 m. Assuming the dissipation of pore pressure during this period of construction is negligible and lateral pressure is half of vertical pressure, estimate the shear strength of soil at base of embankment just after increasing the height of construction.	CO3, CO4 & CO5				

Tutorial – V					
Bearing Capacity of Shallow Foundation					
	Answer the following:	Mapped			
		With			
1	A 2 m wide strip footing is founded at a depth of 1.5m below the ground level	CO1&			
	in a homogeneous bed of dense sand, having the following properties. γ =18.5	CO3			
	kN/m^3 , and $\emptyset = 36^\circ$. Determine the ultimate, net ultimate, net safe bearing				
	capacity of the footing. Assume a factor of safety of 3.0. For $\emptyset = 36^{\circ}$, Nc = 60,				
	Nq = 42, $Nr = 47$. Use Terzaghi's theory.				
2	A square footing of size 2.2 m x 2.2 m is placed over loose sand at a depth of 1.6	CO2 &			
	m. with soil properties $\gamma = 16.5 \text{ kN/m}^3$, C = 11 kN/m ³ and Ø = 20°. Determine the	CO3			
	safe load that can be carried by the footing.				
3	A footing of size $2m \times 2m$ has to carry an axial load of 600 kN with $M_x = 180$	CO2&			
	kN.m. Thesoil properties are: $\gamma = 20 \text{ kN/m}^3$, C = 150 kN/m ² , Ø = 25°. Calculate	CO3			
	the net ultimate bearing capacity, if the water table is assumed to rise up to				
	foundation level. Use I.S. method together with shape and depth factors.				
4	A purely cohesive soil has a unit weight of 20 kN/m ³ and C = 150 kN/m^2	CO2&			
	Determine thesafe bearing capacity for a rectangular footing 3m x 2m at a depth	CO3			
	of 2m. Take F.S. = 3. Use appropriate method.				
5	A square footing is required to carry a net load of 1000 kN. Determine the	CO3&			
	size of the footing if the depth of foundation is 1.5m and tolerable settlement	CO5			
	is 40 mm. The watertable is at a great depth, The soil is sandy and average				
	observed N value is 15.Take F.S. = 3. Use Teng's equation.				
	Answer the following:				
1	Ultimate bearing capacity of a strip footing on cohesive soils will :	CO1			
	(i) Increases with width of footing				
	(ii) Decreases with increases of width of footing.				
	(iii) Remains constant with increase of width of footing.				
	(iv) Cannot be said.				
2	Terzaghi's bearing capacity factors depends on	CO1			
	(i) cohesion of soil (ii) angle of friction of soil				
	(iii) permeability of soil (iv) all the above				
3	The reduction factor due to water table at a depth equal to half the width of footing	CO1			
	below footing is (i) 0.5 (ii) 0.75 (iii) 1.0 (iv) 0.25				
4	A standard penetration test is conducted at a certain depth in a saturated fine sand stratum. The observed N value is 25. The equivalent resistance value is	CO1			

	Tutorial – VI						
Pile Foundation							
Answer the following:							
1	A 18 m long, 300 mm diameter pile is driven in a uniform deposit of soft clay	CO2 &					
	having an unconfined compressive strength of 35 kN/m ² . The water table is at a	CO3					
	great depth. The average dry unit weight of the clay is 18 kN/m ³ . Calculate the						
	safe load capacity of a pile with a factor of safety of 3.0.						
2	Estimate the pile length required to carry 600 kN axial load. The 500 mm pile is	CO2 &					
	to be filled with concrete after driving.	CO3					
	Layer I : Soft clay of 6m depth, C = 30 kN/m ² , γ = 18.5 kN/m ³						
	Layer II : Medium stiff clay of depth L, C = 55 kN/m ² , γ = 19.8 kN/m ³						
3	A pile load test is made on a 350 mm dia. test pile & following data are obtained.						
	Load (kN): 0 300 600 900 1200 1500 1800	CO3					
	Settlement (mm) : 0.00 1.25 3.75 7.50 13.75 23.75 36.75						
	Determine the design load on pile considering the settlement criteria. F.S.=2.0						
4	A square group of 9 piles, 9 m long was driven into soft clay. The piles used were	CO4 &					
	30 cm diameter,9 m length with center to center spacing of 0.9 m. The sub soil	CO5					
	consists of clay with unconfined compressive strength of 90 kN/m ² . What is the						
	capacity of pile group?. Take $\alpha = 0.8$ and FOS = 2.5.						
5	Design square pile group to carry a load of 400 kN including the weight of pile	CO5					
	cap at a site where the soil is uniform clay to a depth of 20 m underlain by rock.						
	The piles are 6 m long and 300 mm in diameter. Average unconfined						
	compressive strength of clay is 60 kN/m^2 . Adhesion factor may be assumed 0.6.						
6	Comment on the following statements:	CO1 &					
	1. Higher the cohesion value, lower is the adhesion factor.	CO2					
	2. Settlement of a group of vertical piles is usually more than that of a single						
	pile under equal axial load.						
	3. The principal effect of negative skin friction is to reduce factor of safety.						

Tutorial – VII				
	Introduction to Geosynthetics			
	Answer the following:	Mapped		
		With		
1	What are the different types of Geosynthetic materials?	CO1 & CO4		
2	Enlist physical, mechanical and hydraulic properties of Geosynthetic materials.	CO1 & CO4		
3	What are the various functions that Geosynthetics fulfill in road construction?	CO1 & CO5		
4	Explain application of Geosynthetic material in soil erosion control.	CO1 & CO5		

Pick up the most appropriate answer:

1	If angle of friction \emptyset , is greater than angle of slope <i>i</i> , the slope is always			
	Α	Stable	В	Unstable
	С	No relation between \emptyset and i	D	Cannot be said
2	The	stability of slope of an earth dan	n is ii	nvestigated for
	Α	Steady seepage condition	В	Sudden draw down condition
	С	During construction	D	All of the above
		condition		
3	New	mark's influence chart can be us	sed fo	r the determination of vertical stress under
	Α	Circular loaded area only	В	Rectangular loaded area only
	С	Strip load only	D	Any shape of loaded area
4	The	Westergaard analysis is used for	r	
	Α	Homogeneous soil	В	Cohesive soil
	С	Sandy soil	D	Stratified soil
5	The	e contact pressure distribution un	nder a	a rigid footing on a cohesion less soil is
	Α	Less at the edges	В	Uniform throughout
	С	More at the edges	D	Cannot be said
6	For	an undisturbed sample the area r	atio o	of the samples should be
	А	Zero	В	10% or less
	С	10 to 25%	D	More than 25%
7	Und	isturbed samples are obtained by	y	
	А	Direct excavation	В	Augurs
	С	Thin wall sampler	D	Thick wall sampler
8	A pl	ate load test is useful to determine	ine	
	Α	Settlement of foundation	В	Bearing capacity of foundation
	С	Both (A) and (B)	D	Shear strength
9	Elas	tic shock waves have different v	eloci	ties in different material is the principle
	invo	lved in		
	А	Electrical resistivity method	В	Seismic refraction method
	С	Both (A) and (B)	D	Pressure meter method

10	The tendency of dense sand to expand on application of shearing load is known as				
	А	Thixotropy	В	Dilatancy	
	С	Activity	D	Sensitivity	
11	Pore water parameter B is a function of				
	А	Over consolidation ratio	В	Degree of saturation	
	С	Under consolidation ratio	D	None of the above	
12		The ratio of pore water pressure of	devel	oped to the applied normal stress is called	
	Α	A factor	В	C factor	
	С	B factor	D	Over consolidation ratio	
13	The	foundation whose length is cons	idera	bly greater than its width, is called	
	Α	Strip footing	В	Isolated footing	
	С	Strap footing	D	Combined footing	
14	Acc	ording to IS code, permissible va	alue	of total settlement for raft foundation in sand	
	is				
	А	25 mm	В	40 mm to 65 mm	
	С	75 mm	D	65 mm to 100mm	
15	A co	ombined footing is is generally us	sed v	vhen	
	А	All columns are spaced apart	В	Columns are spaced close to each other	
	С	There is only one column	D	Two columns and they are spaced far apart	
16	In st	atic cone penetration test, the cro	DSS-SC	ectional area of the cone is	
	А	10 cm^2	В	20 cm^2	
	С	35 cm^2	D	50 cm^2	
17	A sh	allow foundation is defined as a	foun	dation which has	
	Α	Depth less than 0.6m	В	Depth less than its width	
	С	Depth less than 1 m	D	Depth is more than the width	
18	Foll	owing assumption is not made in	the '	Terzaghi's bearing capacity theory	
	Α	Footing is at shallow depth	В	Base of footing is smooth	
	С	L/B ratio is infinite	D	Load is truly vertical	
19	A he	eave on the sides of foundation is	alw	ays observed in	
	Α	Punching shear failure	В	Local shear failure	
	С	General shear failure	D	Rotational failure	

20	For	a cohesion less soil, general sh	ear fa	ailure is likely to occur if angle of friction is
	Α	Greater than 36°	В	Between 28° and 36°
	С	Less than 20°	D	0°
21	Acc	ording to Terzaghi' equation, the	bear	ing capacity of strip footing resting on
	cohe	esive soil (C= 10 kN/m ²) per unit	t dept	th and unit width (assume $Nc = 5.7$) is
	Α	47 kN/m ²	В	15.7 kN/m ²
	С	57 kN/m ²	D	67 kN/m ²
22	The	pit size made in plate load test is	s gen	erally
	А	5 times the width of plate	В	2.5 times the width of plate
	С	1.5 times the width of plate	D	equal to the width of plate
23	Pern	nissible settlement is maximum i	in the	e case of
	Α	Isolated footing on clay	В	Isolated footing on sand
	С	Raft on clay	D	Raft on sand
24	The	immediate settlement of a rigid	footii	ng is about times the maximum
	settl	ement of an equal flexible footin	ıg.	
	А	0.9	В	0.8
	С	0.7	D	0.5
25	Whi	ch IS code gives a chart for the c	calcu	lation of settlement per unit pressure as a
	func	tion of width of footing and stan	dard	penetration number?
	Α	IS-6403	В	IS-456
	С	IS-1904	D	IS-8009
26	Whi	ch soil property is not used to ca	lcula	te the elastic settlement of footing on
	satu	rated clay?		
	Α	Poisson's ratio		Elastic modulus of soil
	С	Width of the loaded area		Coefficient Subgrade modulus
27	Und	er reamed piles are generally		
	А	Driven piles	В	Bored piles
	С	Precast piles	D	Pre stressed piles
28	Neg	ative skin friction on a pile is du	e to	
	Α	Downward movement of soil	В	Downward movement of pile
	С	Relative settlement of soil	D	Relative settlement of pile

- 29 The minimum centre to centre distance of a friction pile should be
 - A 1.5 times diameter of pile B 2 to 3 times diameter of pile
 - C 3 to 4 times diameter of pile D 4 to 5 times diameter of pile

30 Following is a function of Geosynthetic material

- A Reinforcement B Filtration
- C Moisture barrier D All of above

References:

- Soil Mechanics and Foundation Engineering; Dr. K.R. Arora; Standard Publishers Distributors, New Delhi, Year 2010
- Soil Mechanics and Foundation Engineering; B.C. Punamia; Laxmi Publication Pvt. Ltd., New Delhi, Year 2010
- Basic and applied soil mechanics; Gopal Ranjan, Rao A.S.R.; New age int. (p) ltd
- Soil Mechanics and Foundation Engineering, S.K.Garg, Khanna Publishers, New Delhi, Year-2005
- Soil Mechanics and Foundation Engineering, P. Purushothama Raj, Pearson India Education Services Pvt. Ltd., Noida, Year-2013
- Relevant IS Codes

Tutorial No.	Tutorial Name	Last Date of Submission
Tutorial I	Slope Stability	19/02/2024
Tutorial II	Stress Distribution of Soils	04/03/2024
Tutorial III	Sub surface Investigation	18/03/2024
Tutorial IV	Shear strength	01/04/2024
Tutorial V	Bearing Capacity of Shallow Foundation	15/04/2024
Tutorial VI	Pile Foundation	29/04/2024
Tutorial VII	Introduction to Geosynthetics & MCQ Questions	13/05/2024

Note: Last Date of Submission of Tutorials

Note: Attach the print of respective tutorials while submitting the tutorials.

Subject Coordinator Dr. H. K. Sarvaiya Applied Mechanics Department SSEC, Bhavnagar