Design of Structures (2950603)

P.D.D.C. – 5th Semester (Civil Engineering)

Shantilal Shah Engineering College Shantilal Shah Engineering College, Bhavnagar

Directorate of Technical Education Gandhinagar, Gujarat

Shantilal Shah Engineering College, Bhavnagar

Certificate

This is to	certi	fy that Mr./N	/Is				
		I	Enrollment	No.			of
P.D.D.C.	Sem	ester 5 th Civi	il Engineeri	ng of tl	his ins	titute (GTU	Code:
<u>043</u>) has	satis	sfactorily co	mpleted the	e tutori	al wor	k for the	subject
Design	of	Structures	(2950603)	for	the	academic	year

Place: Bhavnagar

Date: _____

Name and Sign of Faculty member

•

Head of the Department

Important Instructions for Students

- [1] Use A-4 size blank pages to prepare design report.
- [2] The report shall have following format (lay out)

	Main Heading	Page No
Margin for Bullets	Sub heading Design calculation/write up	Margin to write references

- [3] Use only front side of page for write up as well as for sketches and detailing.
- [4] Mark 1¹/₂" margins on both left and right. Use left margin to show bullets and right margin to show references like clause of code/page etc.
- [5] Start new design problem on new page.
- [6] Heading and sub heading shall be distinct than write up.
- [7] Support the calculation/s with neat sketches wherever required.
- [8] Attach A3 size sheets to furnish design detailing (Use AutoCAD Drawing for at-least one design problem).
- [9] All design detailing shall be strictly as per relevant IS standards.
- [10] Spiral bound is preferred as it is more convenient for reading.
- [11] Student shall bring required IS codes and other references in class and tutorial hours as listed below.
- [12] IS 456: 2000, IS 800: 2007, IS 875 (Part I to V), SP: 6 (Part-1)] all the Codes includes latest Amendment), steel table

Index

(Progressive Assessment Sheet)

Sr. No.	Name of Tutorial/ Assignment	Page No.	Starting Date	Date of submission	Marks	Sign. of Teacher with Date	Remarks
	PART A: TUTORIAL	.: 1 to	<u>6 (Reinfo</u>	orced Concr	ete Stru	<u>ictures)</u>	
1	Introduction						
1							
2	Beams						
	Singly Reinforced Beam						
	Doubly Reinforce Beam						
	T Beam						
3	Slabs						
4	Columns						
5	Footing						
6	Bond, Development Length &						
	Shear Reinforcement						
	PART B: TUT	ORIA	L: 7 to 1	0 (Steel Stru	ictures)		
7	Introduction & Tension						
	Member						
8	Compression Member, Lacing						
	and Battening						
9	Steel Beam						
10	Slab Base and Gusseted Base						
	Total						

PART A: TUTORIAL – 1-6 (Reinforced Concrete Structures)

TUTORIAL – 1

INTRODUCTION

		COs	LEVEL
1.	Define the aim of structural design.	1	R
2.	List out various methods of structural design.	1	R
3.	Write down the difference between Limit State Method (LSM) and Working Stress Method (WSM).	1	R
4.	Define characteristic cube compressive strength of concrete (fck) and characteristic strength of steel (fy).	1, 2	R
5.	Define tensile strength of steel (fct).	1, 2	R
6.	Write advantage and disadvantages of RCC. Why steel is used as reinforcement in RCC?	1, 2	R
7.	List out the combination of loads as per IS-1893.	1, 2	R
8.	Calculate effective span for (a) Simply supported beam and slab (b) continuous beam and slab (c) cantilever beam as per IS 456(2000)	1, 2	Ε
9.	Define basic values of span to effective depth ratios for Cantilever beam, simply supported beam and Continuous beam (a) for spans up to 10m. (b) Spans above 10m.	1, 2	R
10	Explain difference between column and strut.	1	U
11	Explain maximum diameter of bar used in slab.	1, 2	U
12	Define nominal cover to reinforcement in slab, footing, column and beam in moderate condition.	1, 2	R
13	Define max. and min. % of reinforcement required in beam.	1, 2	R
14	Define (1) Balance section (2) Under reinforced section (3) Over reinforced section	1, 2	R
15	• Explain types of Load. List out various IS codes used for calculation of loads.	1, 2	R

TUTORIAL – 2 BEAMS

		COs	LEVEL
Si	ngly Reinforced Beam		
1.	For a limiting section 300mm X 600mm gross Determine the following if $M - 20$	3, 5	E
	concrete mix and fy = 415 N/mm^2 steel is used (i) Max. Compressive stress and max.		
	Tensile stress (ii) Lever arm (iii) Total compression (iv) Total tension (v) Limiting		
	moment (vi) Area of tensile steel.		
2.	A RCC beam rectangular in section 230mm X 450mm effective is singly reinforced	3, 5	E
	by 4 no. of 16 mm dia. Bars of fe -415 grade steel and M -20 grade of concrete.		
	Determine moment of resistance of section.		
3.	Determine moment of resistance for a beam 230mm X 350mm overall size and	3, 5	E
	effective cover 40 mm. The beam is reinforced with 5 no. 16mm dia. Bars take fck =		
	20 N/mm ² , fy = 415 N/mm ² .		
4.	A singly R.C. beam effective section 300mm X 600mm, provide with	3, 5	E
	3 - 20Φ + 3 - 16Φ at effective cover of 50 mm is simply supported 4.50 m. span. Use		
	fck = 20 N/mm ² , fy =415 N/mm ² . Evaluate safe load (L.L.) on beam.		
5.	Design singly R.C. balance section for factored moment 225 kN-m. Use fe – 415 steel	4, 5	С
	and $M - 20$ grades of concrete. Take width to effective depth ratio for the beam 0.7.		
6.	Design singly R.C. beam having width 230 mm, simply supported with effective span	4, 5	С
	of 4.0 m. it is loaded with a U.D.L. of 15 kN/m excluding self-weight. Use $M-20$		
	grade concrete and Fe $-$ 415 steel. Check the beam for max. and min. steel and		
	deflection.		
7.	Explain Stress -Strain diagram for singly Reinforced concrete beam. Derive equation	1, 2	R
	of Moment of Resistant for balanced section.		
8.	Determine the moment of resistance of a beam section 230 mm X 600mm effective	3, 5	E
	depth reinforced with 3 - nos. 25 mm diameter bars. $M-20$ grade concrete and Fe $-$		
	250 steel reinforcement is used. Also find out the moment of resistance if the		
	materials are $M - 20$ and Fe - 415. Comment on the answer.		
Do	ubly Reinforce Beam		
1.	Explain necessity of doubly R.C. beam	3, 4	U
2.	Explain stress diagram for doubly R.C. beam.	3, 4	U
3.	A doubly reinforced beam of 300 mm X 600 mm overall is reinforced with	3, 5	E
	$5-16\Phi$ bars as compression reinforcement and $5-20\Phi$ bars as tensile reinforcement.		
	Effective cover on both sides is 50mm, grade of concrete $M - 25$ and steel Fe - 415.		

Determine (i) types of section (ii) Moment resistance capacity of the section.		
4. A rectangular beam of size 200mm X 350mm effective depth is subjected to a	3, 5	Ε
factored moment of 150 kN-m. Determine the reinforcement for flexure. The		
effective cover for the tensile and compression steel are 50 mm. The materials are $M-$		
25 grade concrete and HYSD reinforcement of grade Fe -415 .		
5. Evaluate the area of tensile and compression reinforcement required for a rectangular	3, 5	Ε
beam of size 230mm X 500mm effective for the factored moment of 325 kNm. The		
effective cover for the tensile and compression steel are 50 mm. The materials are $M-$		
20 grade concrete and HYSD reinforcement of grade		
Fe – 415.		
<u>T Beam</u>		
1. A RCC T-beam section reinforce for tension has the following data,	3, 5	Ε
Flange width = 1600 mm		
Thickness of Flange = 125 mm		
Effective depth = 700 mm		
Width of $rib = 325 mm$		
Determine the limiting moment of resistance of the section. Take $M - 20$ concrete and Fe		
- 415 steel.		
2. Calculate limiting value of M.R. of T-beam with the following data,	3, 5	Ε
Flange width = 1900 mm		
Depth of Flange = 130 mm		
Effective depth of beam = 550 mm		
Width of web = 300 mm		
Take $M - 20$ concrete and Fe $- 415$ steel $4 - no.$ of 25 mm dia.		
3. Determine M.R. of T-beam with the following data,	3, 5	Ε
Flange width = 1500 mm		
Depth of Flange = 115 mm		
Effective depth of beam = 425 mm		
Width of web = 300 mm		
Take $M - 20$ concrete and Fe $- 415$ steel 5 $-$ no. of 20 mm dia.		
4. Determine M.R. of T-beam with the following data,	3, 5	Ε
Flange width = 1500 mm, Depth of Flange = 115 mm		
Effective depth of beam = 425 mm		
Width of web = 300 mm		
Take M – 20 concrete and Fe – 415 steel 5 – no. of 20 mm dia.		

TUTORIAL – 3

SLABS

		COs	LEVEL
1.	Explain various types of slabs with sketch.	3, 4	U
2.	Design and detail simply supported slab on 300 mm wide brick masonry for a clear	4, 5	С
	room size 4 m X 10 m. use material grade $M-20$ and Fe $-$ 415. Take live load as 3.5 $$		
	kN/m^2 and floor finish as 1 kN/m^2 .		
3.	Design for the slab of the hall of school building 10 X 8 m with provision of two	4, 5	С
	intermediate beams 300 X 500 mm at a clear distance of 3.5 m. the slab is resting on		
	four walls of 300 mm thick and carrying live load of 3.5 kN/m^2 . Show the details of		
	reinforcement for the slab by sketch. Use $M - 20$ and $Fe - 415$.		
4.	A one-way continuous slab of 150 mm thickness resting on 300 mm wide brick	4, 5	С
	masonry supports spaced at 4 m c/c. considering live load as 2.5 kN/m^2 and floor		
	finish as 1 kN/m ² . Design and detail slab for span moment and support moment.		
	Assume four spans of the slab. Take $M-20\ grade$ of concrete and Fe $-415\ grade$ of		
	steel.		
5.	The 1 m wide single flight R.C.C. stair case is to be provided for a height of 2.6 m in a	3, 4, 5	Ε
	residential building. Staircase is supported at top and bottom risers by beams 300 mm		
	wide. Waist slab is 180 mm thick. Riser 200 mm and tread is 300 mm. Evaluate		
	effective span, design load, reinforcement in waist slab. Prepare of sketch use $M - 20$		
	and Fe – 415.		
6.	Design a simply supported slab of 3.0 X 4.5 m effective span supported on 300 mm	4, 5	С
	thick walls on all four sides. Assume live load 3 kN/m^2 and floor finish load		
	0.5 kN/m^2 . Use M – 20 and Fe – 415. Corners are not held down.		
7.	Design and detail Reinforced Concrete slab for a room 6m X 5m. The slab is to be	4, 5	С
	cast monolithically over beams with corners held down. The width of supporting		
	beams 230 mm. Slab carries superimposed load of $3kN/m^2$. Use M – 20 and Fe – 415.		

TUTORIAL-4 COLUMN

	COs	LEVEL
1. Classify various types of columns based on its (a) Shape (b) Bracing system (c)	3, 4	U
Lateral and longitudinal reinforcement (d) Effective Length of column (e) Types of		
loading.		
2. State the assumptions in design of compression member.	3	R
3. A reinforced shot column of 400 mm X 450 mm in cross section is to carry an axial	3, 5	Ε
factored load of 1680 kN calculate the area of steel required and the spacing of 8 mm		
dia. Lateral ties. Use concrete $M - 20$ and steel Fe - 415. Give detail sketch of the		
section.		
4. A short RCC rectangular column of 300 mm X 450 mm is reinforced with 6no. Of	3, 5	Ε
longitudinal bars (4 - no. of 25 mm dia. And 2 - no. of 20 mm dia) determine load		
carrying capacity of the column if $M - 25$ mix and Fe $- 415$ steel is used also design		
the column for lateral ties. Check the column for minimum eccentricity. Unsupported		
length of column is 3.20 m. Give detail sketch of the section.		
5. Design rectangular RC column for an axial load 1500 kN use $M - 20$ concrete and Fe	4, 5	С
-415 steels also check for eccentricity, unsupported length of column is 3.50 m.		
6. Design a short circular column for an axial compressive factored load of 950 kN. The	4, 5	С
grade of concrete $M - 25$ steels Fe $- 415$ it is to be provided with minimum		
reinforcement sketch the detail.		

TUTORIAL – 5 FOOTING

					COs	LEVEL
1.	A rectangular colum	n of size 230 X 600 mm is 1	oaded with 900 kN character	ristic	3, 4, 5	Ε
	load. The safe bearing capacity of soil is 200 KN/m ² . Determine the dimension of					
	the footing for the fo	llowing cases.				
	a. If footing is squar	e.				
	b. If the footing has	equal projection in all four side	es.			
	c. If the dimension p	parallel to the shorter side of co	lumn is restricted to 2 m.			
	d. If the dimension p	parallel to the longer side is rest	tricted to 2.5 m.			
2.	Design an isolated set	quare pad footing for a square	e column 300 X 300 mm for	axial	4, 5	С
	load of 1700 kN. Us	se concrete grade M – 25 and	1 Fe – 415 steel grade. Take	safe		
	bearing capacity of se	oil 140 kN/m ² . Also draw neat	sketch.			
3.	Design a rectangular	r isolated sloped footing for a	a column of size 230 X 600	mm	4, 5	С
	carrying an axial cha	racteristic load of 1800 kN and	d reinforced with $8 - nos$. 20) dia.		
	Bars in M – 25 grade	e concrete. The allowable bear	ing pressure on soil is 250 kN	J/m^2 .		
	The materials for fo	oting are grade M - 25 conc	rete and HYSD reinforcement	nt of		
	grade Fe – 415.					
4.	Determine the plan	dimensions of a combined	footing for two axially lo	aded	3, 4, 5	E
	columns with follow	ing data if (1) Width is not rest	tricted, considering 1 m project	ction		
	from C1 (2) Width i	s restricted to 2.3 m. Assume	self weight of footing is 150	% of		
	axial loads.					
	Columns	C1	C2			
	Туре	Interior	Interior			
	Size	400mm X 400 mm	400mm X 400mm			
	Р	1000 kN	1200 kN			
	Spacing	3 m c/c from C1 to C2				
	SBC/ABP	150 kN/m^2 at 1.6 m depth				
	5. Design a combine	e rectangular footing for 1200	0 kN and 1800 kN column l	oads		
spaced at 4 m. centre to centre. Consider following data for the design.						С
•	• Size of each column 450 mm X 450 mm				4,5	
•	$SBC = 250 \text{ kN/m}^2$					
•	Use M – 20 concrete	and Fe – 415 grade steel				

TUTORIAL – 6

BOND, DEVELOPMENT LENGTH AND SHEAR REINFORCEMENT

		COs	LEVEL
1.	Explain anchoring of reinforcement.	3	U
2.	A simply supported R. C. C. beam with clear span of 5 m, support width 230	3, 4, 5	С
	mm, size of beam 230 wide and 420 mm deep, tension bars as $4 - nos$. of 16mm		
	dia. bars and clear cover of 25 mm. If it is loaded by an all-inclusive factored		
	U.D.L. of 60 kN/m, Design the shear reinforcement near support only using 2		
	legged 6 mm. mild steel stirrups.		
3.	Explain various types of shear reinforcement with sketch.	3	U

PART B: TUTORIAL – 7 To 10 (Steel Structures)

TUTORIAL – 7

INTRODUCTION & TENSION MEMBER

		COs	LEVEL
1.	Write down various advantages and disadvantages of steel structure.	3, 4	R
2.	List out series of rolled steel (i) I-sections, (ii) Channel section, and (iii) Angle	3, 4	R
	sections.		
3.	Explain the advantages of bolted connections over riveted or welded connections.	3, 4	U
4.	Elaborate the effect of shear leg in tension member with necessary sketch.	3, 4	С
5.	Determine the design tensile strength of the plate 200mm X 12mm with the holes	3, 5	Ε
	for 16mm diameter bolts as shown in fig.1 Steel use is of $Fe - 415$ grade quality.		
	$\leftarrow \begin{bmatrix} 8 & & & \\ - \varphi^1 & - \varphi^2 & \\ 8 & & & \\ - \varphi_4 & - \varphi_3 & \\ 8 & & \\ 8 & & \\ - 35 & & 60 \\ - \end{bmatrix} \rightarrow$		
	Fig1		
6.	A single unequal-leg angle 90 X 60 X 6 mm is connected to a 10 mm thick at the	3, 5	Е
	ends with 5 no. of bolts of 16 mm diameter bolts to transfer tensile force. Determine		
	the design tensile strength of the angle. (i) if gusseted plate (G.P.) is connected to		
	90mm angle(ii) if G.P. is connected to 60mm angle		
7.	Design and detail a connection for a truss member 2 - ISA 60 X 60 X 8 mm	4, 5	С
	connected back-to-back on both the sides of a 10mm thick gusset plate using M20		
	bolts of property class 4.6 grade. The axial tensile factored load in the member is		
	150 kN.		
8.	Determine the tensile strength of a roof truss diagonal 100 X 75 X 6 mm having	3, 5	Ε
	fy = 250 MPa connected to gusset plate by 4 mm welds of 140 mm long at top and		
	310 mm long at bottom. The longer edge of 100 mm was connected to plate of 8mm		
	thickness.		
9.	Design a lap joint and butt joint between two plates each of width 120 mm. If the	4, 5	С
	thickness of one plate is 16mm and other is 12 mm. the joint has to transfer a design		
	load of 160 kN. Plates are of Fe – 410 grade. Calculate the efficiency of the joint.		
	Assume 4.6 grade bolts.		
10	Design a single angle section for a tension member of a roof truss to carry a factored	4, 5	C
	tensile force of 225 kN. Take length of member 3m. use $M-20$ mm shop bolt of		
	grade 4.6.		

TUTORIAL – 8

COMPRESSION MEMBER, LACING AND BATTENING

		COs	LEVEL
1.	Explain different end conditions of columns with their effective length.	3, 4	U
2.	Distinguish between behavior of short and long compression members.	3, 4	Ν
3.	Explain IS 800 recommendations for compression member in trusses.	3, 4	U
4.	Design axial load capacity of the column ISHB 300@ 577 N/m if the length of	4, 5	С
	column is 3m and its both ends pinned.		
5.	<u>Calculate</u> the compressive resistance of a compound column consisting of	3, 5	E
	ISHB 300 with one cover plate 350 X 20 mm on each flange and having a		
	length of 5 m. assume that bottom of the column is fixed and top is pinned,		
	fy = 250 MPa		
6.	Determine axial compressive load carrying capacity of a 2.3 m long single	3, 5	E
	angle strut ISA 75 X 50 X 8 mm. The longer leg is connected to the gusset plate		
	with two bolts at each end. Assume hinged condition.		
7.	Calculate compressive strength of 2 ISA 80 X 80 X 8 mm placed on either side	3, 5	E
	of gusset plate 8 mm thick with effective held in position at both ends but		
	restrained against rotation at one end. The length of member is 3 m and fy is 250		
	MPa.		
8.	<u>Design</u> a single angle strut connected to the gusset plate to carry 180 kN	4, 5	С
	factored load. The length of the strut between centre to centre inter section is 3		
	m.		
9.	Explain laced and battened columns with sketch.	3, 4	U
10	<u>Design</u> a laced column with two channels back to back of length 10m to carry	4, 5	С
	an axial factored load of 1400 kN. The column may be assumed to have		
	restrained in position but not in direction at both ends (hinged ends).		
11.	<u>Design</u> a column to carry an axial factored load of 1200 kN. The actual length	4, 5	С
	of column is 6m with both ends effectively held in position and restrained		
	against rotation. Select two channels back to back. Assume that the column is		
	laced and $fy = 250$ MPa.		
12	. <u>Design</u> a single lacing system for a column composed of 2 ISMC 300 @ 35.8	4, 5	С
	kg/m placed back to back at clear spacing of 200mm. axial factored load on		
	column is 1500 kN. Effective length of column is 5.0 m.		

TUTORIAL – 9 STEEL BEAM

		COs	LEVEL
1.	Design a simply supported steel beam of 7 m spam carrying a RC floor	4, 5	С
	capable of providing lateral restraint to the top compression flange. The		
	total factored udl subjected was 53.6 kN/m throughout and factored point		
	load act at centre as 150 kN. Use ISMB section. Perform the check for web		
	buckling only.		
2.	A roof of a hall measuring 8m X 12m consist of 100mm thick R.C. slab	4, 5	С
	supported on steel I – beams spaced 3 m apart. The finishing load may be		
	taken as 1.5 kN/m ² and live load as 2 kN/m ² . Design the steel beam.		
3.	Design a uniform section for Moment and shear capacity of two spans	4, 5	С
	simply supported continuous beam ABC. Span AB is of 4 m length and		
	carries a central concentrated load of 150 kN and span BC is of 6m length		
	and carries a central concentrated load of 200 kN. Assume the beam is to		
	be laterally supported. Adopt plastic design procedure.		
4.	Determine the maximum uniformly distributed load that can be carried by	3, 5	Ε
	a laterally unrestrained ISMB300 simply supported beam of 2.5 m effective		
	length.		
5.	A simple support beam is laterally supported over the span of 8 m and	4, 5	С
	loaded by a super imposed load of 30 kN/m over the entire span and		
	100 kN and centre. Design the beam using ISMB section and check for all		
	the safety.		
6.	A beam of ISMB550 has simple support span of 9m and is laterally	3, 5	Ε
	supported at centre only. <u>Calculate</u> the maximum all inclusive factored udl		
	it can support.		
7.	Design an I section purlin for an industrial building to support a galvanized	4, 5	С
	corrugated iron sheet roof. Given data:		
Sp	acing of the trusses = $5.0m$, Spacing of purlins = $1.5 m$		
Inclination of main rafter to horizontal $= 30 \text{ deg.}$			
W	eight of galvanized sheets taking into account laps and connecting bolt =		
13	130 N/m ²		
Imposed snow load = 1.5 kN/m^2 . Wind load = 1.0 kN/m^2			
8.	Calculate the moment carrying capacity of a 3 m long ISMB 350 beam	3, 5	Ε
	which has full torsional restraint and no warping restraint at ends only.		
	(Laterally unrestrained beam).		

TUTORIAL – 10

Slab Base and Gusseted Base

		COs	LEVEL
1.	Explain the design procedure of base plate.	3, 4	U
2.	Explain the design procedure of gusseted base.	3, 4	U
3.	Design a column base for a factored axial compressive load of 700 KN and	4, 5	С
	a factored BM of 150 KN-m about major axis. The column section		
	provided is ISHB 400@ 806.4 N/m. Design the anchor bolts also, if		
	required. The bearing pressure from concrete may be assumed to be		
	6.0 KN/m2.		
4.	Design a column cap for a truss transferring a reaction of 120 KN to a	4, 5	С
	column section ISHB 450 @ 907.43 N/m.		

PART C: TUTORIAL – 11 (RCC and Steel Structures)

TUTORIAL – 11

1. **Prepare** a sketch book with at least 20 sketches of different RCC and Steel members with detailing.