Design of Structures (3150612)

B.E. Semester 5 (Civil Engineering)

Shantilal Shah Engineering College Shantilal Shah Engineering College, Bhavnagar

Directorate of Technical Education Gandhinagar, Gujarat

Shantilal Shah Engineering College, Bhavnagar

Certificate

This is to certify that Mr./Ms	
Enrollment No	of B.E.
Semester 5 th Civil Engineering of this institute (GTU Code:	<u>043</u>) has
satisfactorily completed the tutorial work for the subject I	Design of
Structures (3150612) for the academic year	•

Place: <u>Bhavnagar</u>

Date: _____

Name and Sign of Faculty member

Head of the Department

Important Instructions for Students

- [1] Use A-4 size blank pages to prepare design report.
- [2] The report shall have following format (lay out)

	Main Heading	Page No
Margin for Bullets	Sub heading Design calculation/write up	Margi n to write refere nces

- [3] Use only front side of page for write up as well as for sketches and detailing.
- [4] Mark 1¹/₂" margins on both left and right. Use left margin to show bullets and right margin to show references like clause of code/page etc.
- [5] Start new design problem on new page.
- [6] Heading and sub heading shall be distinct than write up.
- [7] Support the calculation/s with neat sketches wherever required.
- [8] Attach A3 size sheets to furnish design detailing (Use AutoCAD Drawing for at-least one design problem).
- [9] All design detailing shall be strictly as per relevant IS standards.
- [10] Spiral bound is preferred as it is more convenient for reading.
- [11] Student shall bring required IS codes and other references in class and tutorial hours as listed below.
- [12] IS 456: 2000, IS 800: 2007, IS 875 (Part I to V), SP: 6 (Part-1)] all the Codes includes latest Amendment), steel table

Index

(Progressive Assessment Sheet)

Sr. No.	Name of Tutorial/ Assignment	Page No.	Starting Date	Date of submission	Marks	Sign. of Teacher with Date	Remarks
	PART A: TUTORIAI	L: 1 to	6 (Reinfo	orced Concr	ete Stru	<u>ictures)</u>	
1	Introduction			17/08/2023			
2	Beams						
	Singly Reinforced Beam						
	Doubly Reinforce Beam						
	T Beam						
3	Slabs						
4	Columns						
5	Footing						
6	Bond, Development Length &						
	Shear Reinforcement						
	PART B: TUT	ORIA	L: 7 to 1	0 (Steel Stru	<u>ictures)</u>		
7	Introduction & Tension						
	Member						
8	Compression Member, Lacing						
	and Battening						
9	Steel Beam						
10	Slab Base and Gusseted Base						
	Total						

PART A: TUTORIAL – 1-6 (Reinforced Concrete Structures)

TUTORIAL – 1

INTRODUCTION

	COs	LEVEL
1. Define the aim of structural design.	1	R
2. List out various methods of structural design.	1	R
3. Write down the difference between Limit State Method (LSM) and Working Stress Method (WSM).	1	R
4. Define characteristic cube compressive strength of concrete (fck) and characteristic strength of steel (fy).	1, 2	R
5. Define tensile strength of steel (fct).	1, 2	R
6. Write advantage and disadvantages of RCC. Why steel is used as reinforcement in RCC?	1, 2	R
7. List out the combination of loads as per IS-1893.	1, 2	R
8. Calculate effective span for (a) Simply supported beam and slab (b) continuous beam and slab (c) cantilever beam as per IS 456(2000)	1, 2	E
9. Define basic values of span to effective depth ratios for Cantilever beam, simply supported beam and Continuous beam (a) for spans up to 10m. (b) Spans above 10m.	1, 2	R
10. Explain difference between column and strut.	1	U
11. Explain maximum diameter of bar used in slab.	1, 2	U
12. Define nominal cover to reinforcement in slab, footing, column and beam in moderate condition.	1, 2	R
13. Define max. and min. % of reinforcement required in beam.	1, 2	R
14. Define (1) Balance section (2) Under reinforced section (3) Over reinforced section	1, 2	R
15. Explain types of Load. List out various IS codes used for calculation of loads.	1, 2	R

TUTORIAL – 2 BEAMS

		COs	LEVEL
Sir	ngly Reinforced Beam		
1.	For a limiting section 300mm x 600mm gross Determine the following if M-20	3,5	Ε
	conc. Mix and fy = 415 N/mm^2 steel is used (i) Max. Compressive stress and		
	max. Tensile stress (ii) Lever arm (iii) Total compression (iv) Total tension (v)		
	Limiting moment (vi) Area of tensile steel.		
2.	A RCC beam rectangular in section 230mm x 450mm effective is singly	3,5	Е
	reinforced by 4 no. of 16 mm dia. Bars of fe-415 grade steel and M-20 grade of		
	concrete. Determine moment of resistance of section.		
3.	Determine moment of resistance for a beam 230mm x 350mm overall size and	3,5	Ε
	effective cover 40 mm. The beam is reinforced with 5 no. 16mm dia. Bars take		
	fck=20 N/mm ² , fy=415 N/mm ² .		
4.	A singly R.C. beam effective section 300mm x 600mm, provide with $3-20\Phi + 3-$	3,5	Е
	16 Φ at effective cover of 50 mm is simply supported 4.50 m. span. Use fck=20		
	N/mm ² , fy=415 N/mm ² . Evaluate safe load (L.L.) on beam.		
5.	Design singly R.C. balance section for factored moment 225 kN-m. Use Fe-415	4, 5	С
	steel and M-20 grade of concrete. Take width to effective depth ratio for the beam		
	0.7.		
6.	Design singly R.C. beam having width 230 mm, simply supported with effective	4, 5	С
	span of 4.0m. it is loaded with a U.D.L. of 15 kN/m excluding self weight. Use		
	M-20 grade concrete and Fe-415 steel. Check the beam for max. and min. steel		
	and deflection.		
7.	Explain Stress -Strain diagram for singly Reinforced concrete beam. Derive	1, 2	R
	equation of Moment of Resistant for balanced section.		
8.	Determine the moment of resistance of a beam section 230 mm X 600mm	3, 5	Е
	effective depth reinforced with 3- nos. 25 mm diameter bars. M20 grade concrete		
	and Fe- 250 steel reinforcement is used. Also find out the moment of resistance if		
	the materials are M-20 and Fe -415. Comment on the answer.		
Do	ubly Reinforce Beam		
1.	Explain necessity of doubly R.C. beam	3, 4	U
2.	Explain stress diagram for doubly R.C. beam.	3, 4	U
3.	A doubly reinforced beam of 300 mm x 600 mm overall is reinforced with 5-16	3, 5	Ε
	Φ bars as compression reinforcement and 5-20 Φ bars as tensile reinforcement.		

Effective cover on both sides is 50mm, grade of concrete M-25 and steel Fe-415.		
Determine (i) types of section (ii) Moment resistance capacity of the section.		
4. A rectangular beam of size 200mm x 350mm effective depth is subjected to a	3, 5	Е
factored moment of 150 kN-m. Determine the reinforcement for flexure. The		
effective cover for the tensile and compression steel are 50 mm. The materials are		
M-25 grade concrete and HYSD reinforcement of grade Fe-415.		
5. Evaluate the area of tensile and compression reinforcement required for a	3, 5	Ε
rectangular beam of size 230mm x 500mm effective for the factored moment of		
325 kNm. The effective cover for the tensile and compression steel are 50 mm.		
The materials are M-20 grade concrete and HYSD reinforcement of grade Fe-		
415.		
<u>T Beam</u>		
1. A RCC T-beam section reinforce for tension has the following data,	3, 5	E
Flange width = 1600 mm		
Thickness of Flange = 125 mm		
Effective depth = 700 mm		
Width of $rib = 325 mm$		
Determine the limiting moment of resistance of the section. Take M-20 concrete and		
Fe-415 steel.		
2. Calculate limiting value of M.R. of T-beam with the following data,	3, 5	Ε
Flange width = 1900 mm		
Depth of Flange = 130 mm		
Effective depth of beam = 550 mm		
Width of web = 300 mm		
Take M-20 concrete and Fe-415 steel 4-no. of 25 mm dia.		
3. Determine M.R. of T-beam with the following data,	3, 5	Е
Flange width = 1500 mm		
Depth of Flange = 115 mm		
Effective depth of beam = 425 mm		
Width of web = 300 mm		
Take M-20 concrete and Fe-415 steel 5-no. of 20 mm dia.		
4. Determine M.R. of T-beam with the following data,	3, 5	Ε
Flange width = 1500 mm, Depth of Flange = 115 mm		
Effective depth of beam = 425 mm		
Width of web = 300 mm		
Take M-20 concrete and Fe-415 steel 5-no. of 20 mm dia.		

TUTORIAL – 3 SLABS

		COs	LEVEL
1.	Explain various types of slabs with sketch.	3, 4	U
2.	Design and detail simply supported slab on 300 mm wide brick masonry for a clear	4, 5	С
	room size 4 m x 10 m. use material grade M-20 and Fe-415. Take live load as 3.5		
	kN/m^2 and floor finish as 1 kN/m^2 .		
3.	Design for the slab of the hall of school building 10×8 m with provision of two	4, 5	С
	intermediate beams 300 \times 500 mm at a clear distance of 3.5 m. the slab is resting		
	on four walls of 300 mm thick and carrying live load of 3.5 $\mathrm{kN/m^2}$. Show the		
	details of reinforcement for the slab by sketch. Use M-20 and Fe 415.		
4.	A one-way continuous slab of 150 mm thickness resting on 300 mm wide brick	4, 5	С
	masonry supports spaced at 4 m c/c. considering live load as 2.5 kN/m^2 and floor		
	finish as 1 kN/m ² . Design and detail slab for span moment and support moment.		
	Assume four spans of the slab. Take M-20 grade of concrete and Fe 415 grade of		
	steel.		
5.	The 1 m wide single flight R.C.C. stair case is to be provided for a height of 2.6 m	3, 4, 5	Ε
	in a residential building. Staircase is supported at top and bottom risers by beams		
	300 mm wide. Waist slab is 180mm thick. Riser 200 mm and tread is 300 mm.		
	Evaluate effective span, design load, reinforcement in waist slab. Prepare of		
	sketch use M20 and Fe 415.		
6.	Design a simply supported slab of 3×4.5 m effective span supported on 300 mm	4, 5	С
	thick walls on all four sides. Assume live load 3 kN/m^2 and floor finish load 0.5		
	kN/m^2 . Use M20 and Fe 415. Corners are not held down.		
7.	Design and detail Reinforced Concrete slab for a room 6m x 5m. The slab is to be	4, 5	С
	cast monolithically over beams with corners held down. The width of supporting		
	beams 230 mm. Slab carries superimposed load of 3 kN/m ² . Use M20 and Fe415.		

TUTORIAL-4 COLUMN

	COs	LEVEL
1. Classify various types of columns based on its (a) Shape (b) Bracing system (c)	3, 4	U
Lateral and longitudinal reinforcement (d) Effective Length of column (e) Types		
of loading.		
2. State the assumptions in design of compression member.	3	R
3. A reinforced shot column of 400 mm x 450 mm in cross section is to carry an	3, 5	E
axial factored load of 1680 kN calculate the area of steel required and the spacing		
of 8 mm dia. Lateral ties. Use concrete M-20 and steel Fe-415. Give detail sketch		
of the section.		
4. A short RCC rectangular column of 300 mm x 450 mm is reinforced with 6no. Of	3, 5	E
longitudinal bars (4no. of 25 mm dia. And 2no. of 20 mm dia) determine load		
carrying capacity of the column if M-25 mix and fe-415 steel is used also design		
the column for lateral ties. Check the column for minimum eccentricity.		
Unsupported length of column is 3.20 m. Give detail sketch of the section.		
5. Design rectangular RC column for an axial load 1500 kN use M-20 concrete and	4, 5	С
Fe-415 steel also check for eccentricity, unsupported length of column is 3.50 m.		
6. Design a short circular column for an axial compressive factored load of 950kN.	4, 5	С
The grade of concrete M-25 steels Fe-415 it is to be provided with minimum		
reinforcement sketch the detail.		

TUTORIAL – 5 FOOTING

				COs	LEVEL
1.	A rectangular colu	mn of size 230 x 600 mm is lo	aded with 900 kN characteristic	3, 4, 5	E
	load. The safe bear	ring capacity of soil is 200 KN	N/m^2 . Determine the dimension	n	
	of the footing for the	ne following cases.			
	a. If footing is squ	are.			
	b. If the footing ha	as equal projection in all four si	ides.		
	c. If the dimension	n parallel to the shorter side of	column is restricted to 2 m.		
	d. If the dimension	n parallel to the longer side is r	estricted to 2.5 m.		
2.	Design an isolated	I square pad footing for a squ	are column 300 x 300 mm for	4,5	С
	axial load of 1700	kN. Use concrete grade M-2	25 and fe-415 steel grade. Take	•	
	safe bearing capaci	ty of soil- 140 kN/m ² . Also dr	aw neat sketch.		
3.	Design a rectangul	ar isolated sloped footing for	a column of size 230 x 600 mm	4,5	C
	carrying an axial cl	haracteristic load of 1800 kN a	and reinforced with 8 nos 20 dia		
	Bars in M-25 gra	de concrete. The allowable b	pearing pressure on soil is 250)	
	kN/m^2 . The mate	erials for footing are grade	e M-25 concrete and HYSE		
	reinforcement of g	rade Fe-415.			
4.	4. Determine the plan dimensions of a combined footing for two axially loaded			1 3, 4, 5	E
	columns with following data if (1) Width is not restricted, considering 1 m			ı	
	projection from C1 (2) Width is restricted to 2.3 m. Assume self weight of			f	
	footing is 15% of axial loads.				
	Columns	C1	C2		
	Туре	Interior	Interior		
	Size	400mm x 400 mm	400 x 400 mm		
	Р	1000 Kn	1200		
	Spacing	3 m c/c from C1 to C2			
	SBC/ABP150 kN/m2 at 1.6 m depth				
	5. Design a combine rectangular footing for 1200 kN and 1800 kN column loads			5	
spaced at 4 m. centre to centre. Consider following data for the design.				C	
•	• Size of each column 450 mm x 450 mm			4,5	
•	$SBC = 250 \text{ kN/m}^2$				
•	Use M20 concrete a	and Fe-415 grade steel			

TUTORIAL – 6

BOND, DEVELOPMENT LENGTH AND SHEAR REINFORCEMENT

		COs	LEVEL
1.	Explain anchoring of reinforcement.	3	U
2.	A simply supported R. C. C. beam with clear span of 5m, support width 230	3, 4, 5	С
	mm, size of beam 230 wide and 420mm deep, tension bars as 4nos. of 16mm		
	dia. bars and clear cover of 25mm. If it is loaded by an all inclusive factored udl		
	of 60kN/m, Design the shear reinforcement near support only using 2 legged		
	6mm. mild steel stirrups.		
3.	Explain various types of shear reinforcement with sketch.	3	U

PART B: TUTORIAL – 7 To 10 (Steel Structures)

TUTORIAL-7

INTRODUCTION & TENSION MEMBER

	COs	LEVEL
1. Write down various advantages and disadvantages of steel structure.	3, 4	R
2. List out series of rolled steel (i) I-sections, (ii) Channel section, and (iii) Angle	3,4	R
sections.		
3. Explain the advantages of bolted connections over riveted or welded connections.	3,4	U
4. Elaborate the effect of shear leg in tension member with necessary sketch.	3, 4	С
5. Determine the design tensile strength of the plate 200mm x 12mm with the holes for	3,5	Ε
16mm diameter bolts as shown in fig.1 Steel use is of Fe-415 grade quality.		
$\leftarrow \begin{bmatrix} & & & & \\ & & & & \\ & & & & \\ & & & &$		
Fig1		
6. A single unequal-leg angle 90x60x6mm is connected to a 10mm thick at the ends	3,5	E
with 5 no. of bolts of 16 mm diameter bolts to transfer tensile force. Determine the	;	
design tensile strength of the angle. (i) if gusseted plate (G.P.) is connected to 90mm	L	
angle(ii) if G.P. is connected to 60mm angle		
7. Design and detail a connection for a truss member 2-ISA60x60x8mm connected	4,5	С
back-to-back on both the sides of a 10mm thick gusset plate using M20 bolts of	•	
property class 4.6 grade. The axial tensile factored load in the member is 150kN.		
8. Determine the tensile strength of a roof truss diagonal $100 \ge 75 \ge 6$ mm having fy =	3, 5	E
250 MPa connected to gusset plate by 4 mm welds of 140 mm long at top and 310	J	
mm long at bottom. The longer edge of 100 mm was connected to plate of 8mm	<u>.</u>	
thickness.		
9. Design a lap joint and butt joint between two plates each of width 120mm. If the	4, 5	C
thickness of one plate is 16mm and other is 12 mm. the joint has to transfer a design		
load of 160 kN. Plates are of Fe-410 grade. Calculate the efficiency of the joint.		
Assume 4.6 grade bolts.		
10. Design a single angle section for a tension member of a roof truss to carry a factored	4,5	C
tensile force of 225 kN. Take length of member 3m. use M-20mm shop bolt of grade	:	
4.6.		

TUTORIAL – 8

COMPRESSION MEMBER, LACING AND BATTENING

		COs	LEVEL
1.	Explain different end conditions of columns with their effective length.	3, 4	U
2.	Distinguish between behavior of short and long compression members.	3, 4	Ν
3.	Explain IS 800 recommendations for compression member in trusses.	3, 4	U
4.	Design axial load capacity of the column ISHB 300@ 577 N/m if the length of	4, 5	С
	column is 3m and its both ends pinned.		
5.	<u>Calculate</u> the compressive resistance of a compound column consisting of	3, 5	Ε
	ISHB 300 with one cover plate 350 x 20 mm on each flange and having a length		
	of 5 m. assume that bottom of the column is fixed and top is pinned, $fy = 250$		
	MPa		
6.	Determine axial compressive load carrying capacity of a 2.3m long single angle	3, 5	E
	strut ISA75x50x8mm. The longer leg is connected to the gusset plate with two		
	bolts at each end. Assume hinged condition.		
7.	<u>Calculate</u> compressive strength of 2 ISA 80 x 80 x 8 mm placed on either side	3, 5	Ε
	of gusset plate 8 mm thick with effective held in position at both ends but		
	restrained against rotation at one end. The length of member is 3 m and fy is 250		
	MPa.		
8.	Design a single angle strut connected to the gusset plate to carry 180 kN	4, 5	С
	factored load. The length of the strut between centre to centre inter section is 3		
	m.		
9.	Explain laced and battened columns with sketch.	3, 4	U
10.	Design a laced column with two channels back to back of length 10m to carry	4, 5	С
	an axial factored load of 1400 kN. The column may be assumed to have		
	restrained in position but not in direction at both ends (hinged ends).		
11.	Design a column to carry an axial factored load of 1200 kN. The actual length	4, 5	С
	of column is 6m with both ends effectively held in position and restrained		
	against rotation. Select two channels back to back. Assume that the column is		
	laced and $fy = 250$ MPa.		
12.	Design a single lacing system for a column composed of 2 ISMC 300 @ 35.8	4, 5	С
	kg/m placed back to back at clear spacing of 200mm. axial factored load on		
	column is 1500 kN. Effective length of column is 5.0 m.		

TUTORIAL – 9 STEEL BEAM

		COs	LEVEL
1. Design a simply	y supported steel beam of 7 m spam carrying a RC floor	4, 5	С
capable of prov	capable of providing lateral restraint to the top compression flange. The		
total factored uc	ll subjected was 53.6 kN/m throughout and factored point		
load act at centre	e as 150 kN. Use ISMB section. Perform the check for web		
buckling only.			
2. A roof of a hal	I measuring 8m x 12m consist of 100mm thick R.C. slab	4, 5	С
supported on st	eel I-beams spaced 3 m apart. The finishing load may be		
taken as 1.5kN/1	m^2 and live load as 2 kN/m ² . Design the steel beam.		
3. Design a unifor	rm section for Moment and shear capacity of two spans	4, 5	С
simply supporte	ed continuous beam ABC. Span AB is of 4m length and		
carries a central	concentrated load of 150kN and span BC is of 6m length		
and carries a cer	ntral concentrated load of 200kN. Assume the beam is to be		
laterally support	ed. Adopt plastic design procedure.		
4. Determine the	maximum uniformly distributed load that can be carried by	3, 5	E
a laterally unres	trained ISMB300 simply supported beam of 2.5m effective		
length.			
5. A simple suppo	ort beam is laterally supported over the span of 8m and	4, 5	С
loaded by a supe	er imposed load of 30kN/m over the entire span and 100kN		
and centre. Des	ign the beam using ISMB section and check for all the		
safety.			
6. A beam of ISN	MB550 has simple support span of 9m and is laterally	3, 5	E
supported at cen	tre only. <u>Calculate</u> the maximum all inclusive factored udl		
it can support.			
7. Design an I sect	ion purlin for an industrial building to support a galvanized	4, 5	С
corrugated iron	sheet roof. Given data:		
Spacing of the trusses = 5.0m, Spacing of purlins = 1.5 m			
Inclination of main	rafter to horizontal $= 30$ deg.		
Weight of galvanize	ed sheets taking into account laps and connecting $bolt = 130$		
N/m ²			
Imposed snow load = 1.5 kN/m^2 . Wind load = 1.0 kN/m^2			
8. <u>Calculate</u> the m	noment carrying capacity of a 3 m long ISMB 350 beam	3, 5	E
which has full	torsional restraint and no warping restraint at ends only.		
(Laterally unres	trained beam).		

TUTORIAL – 10

Slab Base and Gusseted Base

		COs	LEVEL
1.	Explain the design procedure of base plate.	3, 4	U
2.	Explain the design procedure of gusseted base.	3, 4	U
3.	Design a column base for a factored axial compressive load of 700KN and	4, 5	С
	a factored BM of 150KN-m about major axis. The column section provided		
	is ISHB 400@ 806.4 N/m. Design the anchor bolts also, if required. The		
	bearing pressure from concrete may be assumed to be 6.0 KN/m2.		
4.	Design a column cap for a truss transferring a reaction of 120 KN to a	4, 5	С
	column section ISHB 450 @ 907.43 N/m.		

PART C: TUTORIAL – 11 (RCC and Steel Structures)

TUTORIAL – 11

1. **Prepare** a sketch book with at least 20 sketches of different RCC and Steel members with detailing.