SHANTILAL SHAH ENGINEERING COLLEGE, BHAVNAGAR **APPLIED MECHANICS DEPARTMENT**

B.E. (Civil Engineering) Semester - 5th

Subject Code: 3150614	Name of Subject: Structural Analysis II (Professional Elective-I)
Date: 30/09/2022	Assignment No: 05

Matrix Methods (Stiffness)

#	Quest	ions
1.	Differentiate between stiffness and flexibility.	
2	Write assumptions made in matrix met	hod of structural analysis.
3.	Give characteristics of stiffness and flex	ibility matrix. Also prove the product of
	Stiffness and Flexibility is unity.	
4.	I. Formulate Displacement Matrix	for a propped cantilever beam of span 4
	m subjected to a central point lo	ad of 40 kN
	II. Write only the Stiffness matrix [S] for the portal frame shown in Figure	
	below (Take AE and EI = Consta	nt).
	В	L K
		m
	4 m	
	400	
	A 7777	
-	Analyze the heart of charm in Figure 1	aing at iff a sea mothed and draw CED and
э.	RMD	sing stimless method and draw SFD and
	12 kN/m	80 kN
	12 kN/m	80 kN
		80 kN
	$ \begin{array}{c} 12 \text{ kN/m} \\ 2EI \\ B \\ 5 \text{ m} \\ \end{array} $	EI $2 m \rightarrow 3 m$
6.	Find the matrices: [AD], [ADL], [S] and	EI 2 m
6.	12 kN/m 2EI B 5 m Find the matrices: [AD], [ADL], [S] and shown in figure below using Stiffness m	EI 2 m 2 m 3 m C C C C C C C D] with usual notations for the beam the beam
6.	12 kN/m 2EI B 5 m Find the matrices: [AD], [ADL], [S] and shown in figure below using Stiffness m 30kN/m	EI 2 m 2 m 40kN/m 80 kN EI 3 m C C C C C C C C C C C C C
6.	12 kN/m 2EI A 2EI B 5 m Find the matrices: [AD], [ADL], [S] and shown in figure below using Stiffness m 30kN/m A	EI 2 m 3 m C 2 m 40kN/m C
6.	12 kN/m 2EI B 5 m + Find the matrices: [AD], [ADL], [S] and shown in figure below using Stiffness m 30kN/m A 1	80 kN EI 2 m 3 m C D] with usual notations for the beam hethod. 40kN/m C C
6.	12 kN/m 2EI A 2EI B 5 m Find the matrices: [AD], [ADL], [S] and shown in figure below using Stiffness m 30kN/m A 4m	EI $2 m$ EI $3 m$ C C $40kN/m$ C B $6m$ C
6.	12 kN/m 2EI B 5 m Find the matrices: [AD], [ADL], [S] and shown in figure below using Stiffness m 30kN/m A 4m	EI C $2 m$ $3 m$ C C $40kN/m$ $6 m$ C
6.	12 kN/m 2EI B 5 m Find the matrices: [AD], [ADL], [S] and shown in figure below using Stiffness m 30kN/m A 4m 4m	EI C $2 m$ $3 m$ C C C $40kN/m$ C B $6m$ C

SHANTILAL SHAH ENGINEERING COLLEGE, BHAVNAGAR APPLIED MECHANICS DEPARTMENT

Name of Faculty: Prof D P Advani

Date of Submission: 22/11/2022

SHANTILAL SHAH ENGINEERING COLLEGE, BHAVNAGAR APPLIED MECHANICS DEPARTMENT

Matrix Methods (Flexibility)

