

Assignment No: 01		
Date: 04-08-2022		
Sub Code 3150614 Title of Subject STRUCTURAL ANALYSIS - II		
#	Questions	
1	Determine the vertical deflection at free end in the overhanging beam as shown in	
	<u>Figure - 1</u> . Assume constant EI. Use Castigliano's method.	
2	Find the displacement at C, as shown in Figure – 2 by using Castigliano's theorem.	
	$E = 2 X 10^4 N/mm^2$.	
3	Find the displacement of B, for Figure – 3 , by Castigliano's theorem. Sectional area varies	
	linearly from A to B.	
4	Determine the vertical and horizontal deflection at free end for <u>Figure – 4</u> , by using unit	
	load method. EI is constant.	
5	State and explain Castigliano's first theorem.	
6	Using Castigliano's first theorem, find horizontal and vertical displacement at R of frame as	
	shown in Figure – 5 . Take $E = 2 \times 10^5 \text{ N/mm}^2$ and $I = 2 \times 10^8 \text{ mm}^4$	
7	Using Castigliano's First (1^{st}) theorem, find the slope and the deflection at the free end of a	
	cantilever beam of span $6m$ and subjected to a UDL of 30 kN/m throughout the span.	
8	Determine the deflection at point C of an overhanging beam as shown in <u>Figure – 6</u> . Adopt	
	$E = 2 X 10^5 N/mm^2$ and $I = 2 X 10^8 mm^4$.	
9	Determine the rotation at the free end of the beam shown in Figure – 7 by Castiglione's	
	theorem. EI = 2 X 10^{13} Nmm ² .	
10	Determine horizontal and vertical displacements of point C for the frame loaded as shown	
	in <u>Figure – 8</u> using unit load method. Take EI = Constant	
11	Calculate the vertical displacement at free end C for the cantilever bent as shown in the	
	<u>Figure – 9</u> .	

SHANTILAL SHAH ENGINEERING COLLEGE, BHAVNAGAR Applied Mechanics Department

Assignment No: 02 Date: 04-08-2022

MOMENT DISTRIBUTION METHOD

[Professional Elective]

Sub Code | 3150614

Title of Subject STRUCTURAL ANALYSIS - II

#	Questions
1	Determine the support moments using moment distribution method for the frame as shown in Figure - 1 . Also
	draw Bending Moment diagram.
2	Analyse the Portal frame shown in Figure - 2 by Moment Distribution Method and draw Bending Moment
	Diagram and Shear Force Diagram.
3	Define the term 'sway'. Enlist the situation wherein say occur in portal frames.
4	Determine the support moments and draw BMD for the beam shown in Figure – 3 by Moment Distribution
	Method.
5	Determine end moments for frame loaded as shown in Figure – 4 using Moment Distribution Method.
	Take EI = constant for all members
6	Analyse the two-story portal frame shown in Figure – 5 .

