Shantilal Shah Engineering College, Bhavnagar Appled Mechanics Department

Unit No:	1	Fundamentals of Statically Determinate Structures
Date:	20/03/2021	
Sub Code	3140603	Title of Subject ${ }^{\text {Structural Analysis-I }}$

\#	Questions
	BASICS AND FRAMED STRUCTURES
1	Indeterminate structures are better than determinate structures" Comment on the statement.
2	Differentiate between stable and unstable structure.
3	Differentiate static and kinematic indeterminacy. Also explain these terms with respect to fixed beam.
4	State and Explain Principle of Superposition.
5	Explain and prove Maxwell's reciprocal theorem
6	Find static indeterminacy and kinematic indeterminacy of structures given in Figure - 1 .
7	Analyze the rigid jointed portal frame shown in the Figure - 2. Draw shear force diagram, bending moment diagram and axial force diagram
8	Analyze the grid shown in the Figure - 3 and draw shear force, bending moment and twisting moment diagrams.
9	For the portal shown in the Figure -4, find out moment at B, shear and axial force in member AB.
10	Find out SI and KI of the structures shown in the Figure - 5 .
11	Find SI and KI of structures shown at Figure - 6.
	ARCHES, CABLES
12	A symmetrical three hinged parabolic arch of span 40 m and rise 8 m carries uniformly distributed load of $30 \mathrm{kN} / \mathrm{m}$ over the left half of the span. The hinges are provided at the support and center of the arch. Calculate the bending moment, radial shear and normal thrust at a distance of 10 m from the left support. Refer Figure - 7
13	A three hinged parabolic arch has a span of 30.0 m and central rise of 5.0 m . It carries two vertical loads of 250 kN at 4.0 m on either side of the central hinge. Calculate the maximum and the minimum bending moments and their position. Also draw BMD.

Shantilal Shah Engineering College, Bhavnagar Applied Mechanics Department

Figure - 3	Figure-4
Figure-5	Internal Hinge -6
Figure-7	Figure - 8

Shantilal Shah Engineering College, Bhavnagar Applied Mechanics Department

UNIT No:		02	STRAIN ENERGY \& DISPLACEMENT OF STATICALLY DETERMINATE STRUCTURES		
Date: 20/03/2021					
Sub Code		3140603	Title of Subject Structural Analysis - I		
	Questions				
STRAIN ENERGY					
	Derive the equation for strain energy stored in an element due to bending. Also find the deflection at the free end of a cantilever beam subjected to a point load at the free end with constant EI by this method.				
	A steel bar of 3.0 m length and $1000 \mathrm{~mm}^{2}$ in cross section suddenly loaded with an axial pull of 20 kN . Find maximum instantaneous stress, maximum instantaneous elongation and strain energy. Take $\mathrm{E}=2 \mathrm{X} 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.				
	A simply supported beam of span 6.0 m carries uniformly distributed load of $10 \mathrm{kN} / \mathrm{m}$ over its entire span. Find the strain energy stored due to bending in the beam. Take E $=2 \mathrm{X} 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{I}=1.5 \mathrm{X} 10^{6}$ mm ${ }^{4}$.				
	A bar of diameter 20 mm and length of 2.2 m is attached with a collar at bottom. If the maximum stress developed is to be limited up to $180 \mathrm{~N} / \mathrm{mm}^{2}$, calculate the maximum value of weight that can be allowed to fall on the collar from 0.2 m height. Assume $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.				

DISPLACEMENT

5	Differentiate between the real beam and conjugate beam
6	Derive an expression of slope at supports for the simply supported beam subjected to point load at the center of the beam.
7	For the simply supported beam subjected to UDL, derive the expressions for slope at support and deflection at the mid span using moment area method.
8	Find the slope and deflection at the free end B of a cantilever beam AB as shown in Figure -1 by moment area method. Take $\mathrm{I}=2 \times 10^{8} \mathrm{~mm}^{4}, \mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
9	Find the slope and deflection at the center C of a simply supported beam AB as shown in Figure -2 by moment area method. Take $\mathrm{I}=2 \times 10^{8} \mathrm{~mm}^{4}, \mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
10	Find the deflection and slope for a cantilever beam shown in Figure -3, using moment area method.
11	A simply supported beam of 3 m span carries two point loads of 120 kN and 80 kN at a distance of 0.6 m and 2 m from the left support. If for the beam $\mathrm{I}=16 \mathrm{X} 10^{8} \mathrm{~mm}^{4}$ and $\mathrm{E}=2.1 \mathrm{X} 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, Calculate the deflection under loads using Macaulay's method. Refer Figure -4.

Shantilal Shah Engineering College, Bhavnagar Applied Mechanics Department

10	A column one meter long has cross sectional area of $9 \mathrm{~cm}^{2}$. Find the slenderness ratio if the section is (a) circular, (b) square and (c) hollow circular with inner radius half the outer radius.
11	A hollow cast iron column has outside diameter 200 mm and thickness of 20 mm . It is 4.5 m long and fixed at both ends. Calculate the safe load and ratio of Euler's and Rankine's critical load. For cast iron $\mathrm{F}_{\mathrm{c}}=550 \mathrm{~N} / \mathrm{mm}, \alpha=1 / 1600$ and $\mathrm{E}=0.8 \mathrm{X} 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
12	A hollow cylindrical cast iron column is 4 m long with both ends fixed. Find the minimum diameter of the column if it has to carry a safe load of 250 kN with a factor of safety of 5. Take internal diameter as 0.8 times the external diameter. Take $\sigma \mathrm{c}=500 \mathrm{MPa}$ and Rankine's constant $\alpha=$ $1 / 1600$.
7	A 2.5 m long pin ended column of square cross section is made up of timber. Using Euler's formula, find out size of the column with a factor of safety 2 for 250 kN axial load. Consider $\mathrm{E}=12.5 \mathrm{GPa}$, Allowable stress in axial compression = 12 MPa.

 Figure - 1	 Figure - 2
C Point of Application	Figure - 4

Shantilal Shah Engineering College, Bhavnagar Applied Mechanics Department

Unit No:	4	Statically Indeterminate Beams	
Date: 20/03/2021			
Sub Code	3140603	Title of Subject	Structural Analysis-I

$\#$	Questions
1	Find the fixed end moments if one of the supports of fixed beam settles by δ.
2	A Fixed Beam of 7.0 m span carries a uniformly distributed load of $10 \mathrm{kN} / \mathrm{m}$ from left end for 3.0 m. Analyze the beam and draw Bending Moment Diagram (BMD) showing important values.
3	Calculate the support moments and reactions of fixed beam shown in Figure - 1.
4	Determine fixed end moments for the fixed beam loaded as shown in Figure - 2. Take EI = constant.
5	Draw the bending moment diagram for the beam shown in Figure - 3. Use consistent deformation method.
6	Analyze the beam shown in Figure - 4 by consistent deformation method. Draw shear force and bending moment diagram. Assume constant EI.
7	Using the method of consistent deformation compute all reactions and draw shear force and bending moment diagram for the beam as shown in Figure - 5.

