

SHANTILAL SHAH ENGINEERING COLLEGE, BHAVNAGAR

APPLIED MECHANICS DEPARTMENT

UNI Date	T No: 04 e: 06 /04/2020 Statically Indeterminate Beams
Sub Code 3140603 Title of Subject Structural Analysis - I	
#	Questions
1	Determine the support moment for a continuous beam as shown in Figure - 1 by Moment
	Distribution Method. Also draw Bending Moment diagram.
2	For a continuous beam ABCD as shown in Figure – 2. Find the moments at all supports.
	$E = 200 \text{ X } 10^3 \text{ N/mm}^2 \text{ and } I = 9 \text{ X } 10^7 \text{ mm}^4.$
3	Analyse the beam shown in Figure – 3 by moment distribution method and find only Final Moments.
4	Analyse a fixed beam has span 5 m subjected to central point load of intensity 20 kN. Draw bending
	moment diagram
5	Derive the equation for fixed end moment developed if one of the supports of a fixed beam settles
	by amount 'δ'.
6	Calculate fixed end moments if left support of fixed beam is rotates clockwise by an amount ' θ '
7	Find out fixed end moment for a fixed beam carrying point load at the center of the span
8	A fixed beam AB carries an U.D.L. of 20 kN/m over entire span of 5 meter. If support B sink by 1 mm
	find out fixed end moments
9	A beam AB of span 5 meter fixed at both ends carries a uniformly distributed load of 20 kN/m over
	the whole span. The left end 'A' rotates clockwise by 0.8° & right end 'B' sinks by 10 mm. Determine
	the fixed end moments & the reactions at the supports. Draw also shear force & bending moment
	diagrams. Take E = 200 kN /mm ² & I = 10 X 10 ⁷ mm ⁴
10	Find reaction at support for the propped cantilever beam having span 6 m and U.D.L. of 10 kN/m
	throughout span using Consistence deformation method. Take EI = Constant.
μ	

