SHANTILAL SHAH ENGINEERING COLLEGE, BHAVNAGAR
 BE Sem-II (All Branches) Mathematics-II(3110015)
 Tutorial-3 (Ex-1 to 22) Topic : Vector Calculus

Ex-1 Find the parametric curve of following:

1. $x^{2}+y^{2}=a^{2}$ in R^{2},
2. $y=x^{2}$ in R^{2}
3. Line segment from the point (a, b) to (c, d).

Ex-2 Find the length of curve of the circular helix $\bar{r}(t)=\cos t \hat{i}+\sin t \hat{j}+t \hat{k}$.

Ex-3 Find the arc length parametrization of the line $x=3 t+2, y=2 t-1$ that has reference point $(2,-1)$ and the same orientation as the original line.

Ex-4 Define: Gradient, Curl and divergence.

Ex-5 Find the directional derivative of $f(x, y)=x y+x e^{y}+\cos (x y)$ at the point $p(1,0)$ in the direction of $\bar{u}=3 \hat{i}-4 \hat{j}$

Ex-6 Determine the directional derivative of $f(x, y, z)=x^{2}+y^{2}+2 z^{2}$ at the point $P(1,1,-1)$ in the direction of line from P to $Q(1,2,3)$.

Ex-7 If $\varphi(x, y, z)=x y z-2 y^{2} z+x^{2} z^{2}$, find $\operatorname{div}(\operatorname{grad} \varphi)$ at the point $P(1,2,3)$.

Ex-8 Find $\operatorname{div}(\vec{F})$ and $\operatorname{Curl}(\vec{F})$, where $\vec{F}=\operatorname{grad}\left(x^{3}+y^{3}+z^{3} 3 x y z\right)$.

Ex-9 Show that $\vec{F}=\left(y^{2}-z^{2}+3 y z-2 x\right) \hat{i}+(3 x z+2 x y) \hat{j}+(3 x y-2 x z+2 z) \hat{k}$ is both solenoidal and irrotational.

Ex- 10 Find the value of constant λ suh that $\vec{F}=\left(2 x^{2} y^{2}+z^{2}\right) \hat{i}+\left(3 x y^{3}-x^{2} z\right) \hat{j}+\left(\lambda x y^{2} z+x y\right) \hat{k}$ is solenoidal.
Ex-11 Evaluate $\int_{C}\left(x^{2}+y\right) d s$, where C is the straight line segment $x=2 t, y=1-t, z=1$ for $0 \leq t \leq 1$.
Ex-12 If $\vec{F}=3 x y \hat{i}-y^{2} \hat{j}$, evaluate $\int_{C} \vec{F} d \bar{r}$, where C is the arc of parabola $y=2 x^{2}$ from $(0,0)$ to $(1,2)$.
Ex-13 Evaluate $\int_{C}(y d x+x d y+z d z)$ whereCisx $=\cos t, y=\sin t, z=t^{2}, 0 \leq t \leq 2 \pi$.
Ex-14 Find the work done when a force $\vec{F}=\left(x^{2}-y^{2}+x\right) \hat{i}-(2 x y+y) \hat{j}$ moves a partical in the XY plane from $O(0,0)$ to $P(1,1)$ along the parabola $x^{2}=y$.

Ex-15 Let a force $\vec{F}=2 x^{2} y \hat{i}+3 x y \hat{j}$ displace a partical in the XY plane from $O(0,0)$ to $P(1,4)$ along a curve $4 x^{2}=y$. Find work done.

Ex-16 Let $\vec{F}=2 x^{2} \hat{i}+x y \hat{j}+\hat{k}$ is the velocity field of a fluid in space. Find the flow along the curve $t \hat{i}+t \hat{j}+\hat{k}$ where $0 \leq t \leq 1$.

Ex-17 Show that the vector field $\vec{F}=(y \sin z-\sin x) \hat{i}+(x \sin z+2 y z) \hat{j}+\left(x y \cos z+y^{2}\right) \hat{k}$ is conservative and find the corresponding scalar potential.

Ex-18 Find a potential function for the field $\vec{F}=e^{y+2 z}(\hat{i}+x \hat{j}+2 x \hat{k})$.

Ex-19 Show that $\vec{F}=\left(y^{2} z^{3}\right) \hat{i}+\left(2 x y z^{3}\right) \hat{j}+\left(3 x y^{2} z^{2}\right) \hat{k}$ is conservative vector field and find the corresponding potential function.

Ex- 20 Write the statement of Green's theorem in the plane.
Verify Green's theorem for the function $\vec{F}=\left(x^{2}+y^{2}\right) \hat{i}-2 x y \hat{j}$ where C is the ractangle in the XY plane bounded by $y=0, y=b, x=0 \& x=a$.

Ex-21 Using Green's theorem, evaluate $\oint_{C} x y d x+x^{2} y^{3} d y$, where C is the triangle with vertices $(0,0),(1,0),(1,2)$.

Ex-22 Verify Green's theorem for $\oint_{C} y^{2} d x+x^{2} d y$, where C is triangle bounded by $x=0, x+y=1 \& y=0$.

