Shantilal Shah Engineering College ,Bhavnagar

B.E. Sem-I (All Branches) Sub: Mathematics-1(3110014)

Review Assignment-1
Topic: Indeterminate form, Beta-Gamma functions, Improper Integral, area and Volume.

Ex-1 Solve the following:

1. $\lim _{x \rightarrow 0} \frac{\tan x-x}{x^{2} \tan x}$
2. $\lim _{x \rightarrow \frac{1}{2}} \frac{\cos ^{2} \pi x}{e^{2 x}-2 e x}$
3. $\lim _{x \rightarrow 0} \sin ^{2} \frac{x}{2} \ln x$
4. $\lim _{x \rightarrow 0} \frac{1}{x}(1-x \cot x)$

Ex-2 Define Beta and Gamma function and state relation between Beta and Gamma functions.
By Using Beta and Gamma functions evaluate / Prove the followin

1. $\beta\left(\frac{9}{2}, \frac{7}{2}\right), \beta$ denote Beta function
2. Prove that $\beta(m, n)=\beta(m, n+1)+\beta(m+1, n), \beta$ denote Beta function.

Ex-3 Evaluate the following Improper Integrals:

1. $\int_{0}^{\infty} \frac{1}{1+x^{2}} d x$
2. $\int_{-\infty}^{\infty} \frac{1}{e^{x}+e^{-x}} d x$
3. Check the convergence of $\int_{0}^{\infty} \frac{1}{\left(1+x^{2}\right)\left(1+\tan ^{-1} x\right)} d x$

Ex-4 (1) Find the volume of the solid of revolution of the area about x-axis bounded by the curve $y=x e^{x}$ and the straight lines $x=1 \& y=0$.
(2) Find the volume of the solid that results the region enclosed by the curves $y=x^{2}$ and $x=y^{2}$ is revolved about Y-axis.
Ex-5 Find the area of the surface generated by revolving $y=\sqrt{9-x^{2}}$ on $[-2,2]$ about $\mathrm{x}-$ axis.

Shantilal Shah Engineering College ,Bhavnagar

B.E. Sem-I (All Branches) Sub: Mathematics-1(3110014)

Review Assignment-2
Topic:Multiple Integral \& Fourier Series

Ex-1 (a) Evaluate $\int_{0}^{1} \int_{0}^{x^{2}}\left(x^{2}+y^{2}\right) d A$, where dA indicate small area in XY-plane.
(b) Evaluate $\iint r \sqrt{a^{2}-r^{2}} d r d \theta$ over the upper half of the circle $r=a \cos \theta$.

Ex-2 Evaluate: $\iint_{R} \frac{x}{y} d x d y$, where R is the Region in first quadrant bounded by $y=x, y=2 x \cdot x=1, x=2$.
Ex-3 Change the order of Integration and evaluate it :
(a) $\int_{0}^{1} \int_{2}^{4-2 x} d y d x$
(b) $\int_{0}^{1} \int_{1}^{e^{x}} d y d x$
(c) $\int_{0}^{a} \int_{\frac{x^{2}}{a}}^{2 a-x} x y d y d x$

Ex-4 Sketch the region of integration, reverse the order of integration and Evaluate the integral $\int_{0}^{24-x^{2}} \frac{x e^{2 y}}{4-y} d y d x$.
Ex-5 Evaluate $\int_{0}^{4} \int_{\frac{y}{2}}^{\frac{y}{2}+1} \frac{2 x-y}{2} d x d y$ by applying the transformations $u=\frac{2 x-y}{2}, v=\frac{y}{z}$ and integrating over an appropriate region in the uv-plane.
Ex-6 Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}} y^{2} \sqrt{x^{2}+y^{2}} d y d x$ by changing into polar coordinators.
Ex-7 Evaluate the following triple integral :
(a) $\int_{0}^{1} \int_{0}^{\sqrt{z}} \int_{0}^{2 \pi}\left(r^{2} \cos ^{2} \theta+z^{2}\right) r d \theta d r d z$
(b) $\int_{0}^{1} \int_{0}^{2-x} \int_{0}^{2-x-y} d z d y d x$

Ex-8 Obtain Fourier series to represent $f(x)=x^{2}$ in interval $-\pi<x<\pi$.
Also deduce that
(1) $\sum_{(1) n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=\frac{\pi^{2}}{12}$
(2) $\sum_{n=1}^{\infty} \frac{1 \pi^{2}}{n^{2} 6}$

Ex-9 Find the Fourier sine series of $f(x)=\cos 2 x,[0, \pi]$.
Ex-10 Find the half-range cosine series for $f(x)=e^{x}, 0<x<\pi$.

