Shantilal Shah Engineering College ,Bhavnagar B.E. Sem-I (All Branches) Sub : Mathematics-1(3110014) Review Assignment-1 Topic: Indeterminate form, Beta-Gamma functions, Improper Integral, area and Volume.

Ex-1 Solve the following:

- 1. $\lim_{x \to 0} \frac{\tan x x}{x^2 \tan x}$ 2. $\lim_{x \to \frac{1}{2}} \frac{\cos^2 \pi x}{e^{2x} 2ex}$ 3. $\limsup_{x \to 0} \frac{1}{2} \ln x$ 4. $\lim_{x \to 0} \frac{1}{x} (1 - x \cot x)$
- Ex-2 Define Beta and Gamma function and state relation between Beta and Gamma functions.

By Using Beta and Gamma functions evaluate / Prove the followin

1.
$$\beta\left(\frac{9}{2},\frac{7}{2}\right)$$
, β denote Beta function

- 2. Prove that $\beta(m,n) = \beta(m,n+1) + \beta(m+1,n)$, β denote Beta function.
- Ex-3 Evaluate the following Improper Integrals:

1.
$$\int_{0}^{\infty} \frac{1}{1+x^{2}} dx$$

2.
$$\int_{-\infty}^{\infty} \frac{1}{e^{x}+e^{-x}} dx$$

3. Check the convergence of $\int_{0}^{\infty} \frac{1}{(1+x^2)(1+\tan^{-1}x)} dx$

Ex-4 (1) Find the volume of the solid of revolution of the area about x-axis bounded by the curve $y = xe^x$ and the straight lines x = 1 & y = 0.

(2) Find the volume of the solid that results the region enclosed by the curves $y = x^2$ and $x = y^2$ is revolved about Y-axis.

Ex-5 Find the area of the surface generated by revolving $y = \sqrt{9-x^2}$ on [-2,2] about x- axis.

MATHEMATICS-1 BE SEM-1

Shantilal Shah Engineering College ,Bhavnagar B.E. Sem-I (All Branches) Sub : Mathematics-1(3110014) Review Assignment-2 Topic:Multiple Integral & Fourier Series

Ex-1 (a) Evaluate $\int_{0}^{1} \int_{0}^{x^2} (x^2 + y^2) dA$, where dA indicate small area in XY-plane. (b) Evaluate $\iint r\sqrt{a^2 - r^2} dr d\theta$ over the upper half of the circle $r = a \cos \theta$. Ex-2 Evaluate: $\iint_{x} \frac{x}{y} dx dy$, where R is the Region in first quadrant bounded by $y = x, y = 2x \cdot x = 1, x = 2$. Ex-3 Change the order of Integration and evaluate it : (a) $\int_{0}^{1} \int_{0}^{4-2x} dy dx$ (b) $\int_{0}^{1} \int_{1}^{e^{x}} dy dx$ (c) $\int_{0}^{a} \int_{\frac{x^{2}}{2}}^{2a-x} xy dy dx$ Ex-4 Sketch the region of integration, reverse the order of integration and Evaluate the integral $\int_{0}^{2} \int_{0}^{4-x^{2}} \frac{xe^{2y}}{4-y} dy dx$. Ex-5 Evaluate $\int_{0}^{4} \int_{y}^{\frac{y}{2}+1} \frac{2x-y}{2} dx dy$ by applying the transformations $u = \frac{2x-y}{2}, v = \frac{y}{z}$ and integrating over an appropriate region in the uv-plane. Ex-6 Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2-y^2}} y^2 \sqrt{x^2+y^2} dy dx$ by changing into polar coordinators. Ex-7 Evaluate the following triple integral : (a) $\int_{0}^{1} \int_{0}^{\sqrt{z}} \int_{0}^{2\pi} (r^2 \cos^2 \theta + z^2) r d\theta dr dz$ (b) $\int_{0}^{1} \int_{0}^{2-x} \int_{0}^{2-x-y} dz dy dx$ Ex-8 Obtain Fourier series to represent $f(x) = x^2$ in interval $-\pi < x < \pi$. Also deduce that (1) $\sum_{(1)n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}$ (2) $\sum_{n=1}^{\infty} \frac{1\pi^2}{n^2\epsilon}$ Ex-9 Find the Fourier sine series of $f(x) = \cos 2x, [0, \pi]$. Ex-10 Find the half-range cosine series for $f(x) = e^x$, $0 < x < \pi$.

MATHEMATICS-1 BE SEM-1