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   Ex-1 Solve the following: 
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Ex-2   Define Beta and Gamma function and state relation between Beta and Gamma   

          functions. 

       By Using Beta and Gamma functions evaluate / Prove the followin 

1. 
9 7

,
2 2


 
 
 

 ,   denote Beta function 

2. Prove that      , , 1 1, ,m n m n m n        denote Beta function. 

Ex-3   Evaluate the following Improper Integrals: 
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Ex-4  (1) Find the volume of the solid of revolution of the area about x-axis bounded   

by the curve xy xe  and the straight lines 1& 0x y  . 

(2)  Find the volume of the solid that results the region enclosed by the curves   
2y x and 2x y  is revolved about Y-axis. 

Ex-5 Find the area of  the surface generated by revolving 29y x   on [-2,2]  

         about x-  axis. 
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Ex-1 (a)  Evaluate  
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x y dA   ,where dA indicate small area in XY-plane. 

         (b)  Evaluate 2 2r a r drd  over the upper half of the circle cosr a  . 

Ex-2   Evaluate: 
R

x
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y ,where R is the Region in first quadrant  bounded by  

             , 2 . 1, 2.y x y x x x     
Ex-3   Change the order of Integration and evaluate it  : 
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Ex-4   Sketch the region of integration, reverse the order of integration and  

              Evaluate the integral  
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Ex-5   Evaluate 
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              integrating  over an appropriate region in the uv-plane.  

Ex-6   Evaluate  
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Ex-7 Evaluate the following   triple integral : 
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Ex-8  Obtain Fourier series  to represent 2( )f x x  in interval  x    .                         

          Also deduce that   (1)    =       (2)  

Ex-9  Find the Fourier sine series of ( ) cos2 ,[0, ]f x x  . 

Ex-10  Find the half-range cosine series for  ( ) xf x e , 0 x   . 

 
  


