

SHANTILAL SHAH ENGINEERING COLLEGE, BHAVNAGAR Applied Mechanics Department

Assignment No: 01			
Date:	03/07/2019 ENERGY PRINCIPLES		
Sub C	ode 2150608 Title of Subject STRUCTURAL ANALYSIS - II		
#	Questions		
1	CASTIGLIANO'S FIRST THEOREM		
1	State and explain Castigliano's first theorem.		
2	Determine the vertical deflection at free end in the overhanging beam as shown in <u>Figure – 1</u> . Assume		
	constant EI. Use Castigliano's method.		
3	Find the displacement at B, as shown in <u>Figure – 2</u> by using Castigliano's theorem.		
	$E = 2 X 10^5 N/mm^2$.		
4	A continuous beam of two equal spans L is uniformly loaded over its entire length. Find the magnitude		
	R of the middle reaction by using the Castiglione's theorem.		
5	Determine the vertical and horizontal deflection at free end for <i>Figure – 3</i> , by using unit load method.		
	EI is constant.		
6	Determine the Θ_A , Θ_B , δ_C , δ_D for a beam shown in <u>Figure – 4</u> . Take EI = 10 X 10 ¹³ Nmm ² .		
7	Discuss the Castigliano's theorem. How it will be useful for the analysis of truss?		
	CASTIGLIANO'S SECOND THEOREM		
1	For continuous beam ABC as shown in <i>Figure – 5</i> , determine support reactions with the use		
	of Castigliano's theorem.		
2	Find fixed end moments and reactions at supports for a fix beam shown in <i>Figure – 6</i> .		
3	Determine reactions at supports for a beam shown in <i>Figure – 7</i> .		
4	Analyse the Portal frame shown in <u>Figure – 8</u> by Castigliano's Second Theorem method.		
5	Find the forces in the members BE and FC of the Truss as shown in <i>Figure – 9</i> . The ratio of length of		
	cross sectional area for all the members is same.		
UNIT LOAD METHOD			
1	Using unit load method, find horizontal and vertical displacement at D of frame as shown in		
	<i>Figure – 3</i> . Take $E = 2 \times 10^5 \text{ N/mm2and I} = 2 \times 10^8 \text{ mm}^4$		
2	Calculate the vertical displacement at free end C for the cantilever bent as shown in the <i>Figure – 10</i> .		
3	Determine the vertical deflection of joint "C" of the truss shown in <i>Figure – 11</i> by unit load method.		
	The cross-sectional area of each member is 400 mm ² . $E = 2 \times 10^5 \text{ N/mm^2}$.		

SHANTILAL SHAH ENGINEERING COLLEGE, BHAVNAGAR Applied Mechanics Department

Page2

Г

Assignment No: 02 Date: 03/07/2019	MOMENT DISTRIBUTION METHOD		
Sub Code 2150608	Title of Subject Structural Analysis - II		

#	Questions
1	Explain: Carry over factor, Moment Distribution factor and Rotation contribution factor
2	Define the term 'sway'. Enlist the situation wherein say occur in portal frames.
3	Analyze the beam as shown in <u>FIGURE – 1</u> by moment distribution method and draw shear force
	and bending moment diagram. The beam has constant EI for both the spans.
4	Determine the support moment for a continuous beam as shown in <u>FIGURE - 2</u> by moment
	distribution method. Also draw bending moment diagram.
5	A beam AB is fixed at A and hinged at B. If the end B sinks by amount ' δ ', what will be the moment
	developed at end A and at end B?
6	A fixed beam AB is of span 5 m. If one of the end settles by 10 mm, what will be the reaction
	developed at each support? E =200 X 10^3 N/mm ² , I = 3 X 10^7 mm ⁴ .
7	For a continuous beam ABCD as shown in <i>FIGURE – 3</i> , find the moments at all supports if , end A
	rotates by 0.002 radian in the clockwise order and the support B settles by 5 mm.
	$E = 200 X 10^3 N/mm^2$, $I = 9 X 10^7 mm^4$.
8	Analyze the frame as shown in <u>FIGURE - 4</u> , by moment distribution method and draw shear
	force and bending moment diagram
9	Analyze the frame shown in FIGURE – 5 with using moment distribution method. Draw bending
	moment diagram only
10	Analyse the portal frame shown in <i>Figure – 6</i> by moment distribution method and find only Final
	Moments.

٦

Г

Assignment No: 03			ΓΙ ΩΡΕ ΝΕΕΙ Ε<i>σ</i>τιών Μετιιώ ς	
Date:	03,	/07/2019	SLOPE DEFLECTION METHOD	
Sub Coc	le	2150608	Title of Subject Structural Analysis - II	

#	Questions
1	Using slope deflection method analyses the beam as shown in <u>FIGURE - 1</u> . Draw SFD and
	BMD both.
2	Analyse the beam shown in $FIGURE - 2$ by slope deflection method and find unknown
	slopes at Joint B and C. Joint B sinks by 10 mm. E = 2×10^5 MPa and I = 16×10^7 mm ⁴ .
3	Find the final moments at supports for the beam shown in <u>FIGURE – 2</u> and plot
	Shear Force and Bending Moment diagram both.
4	Determine the support moments using slope deflection method for the continuous
	girder shown in <u>FIGURE – 3</u> , if the support B sinks by 2.5 mm. For all members Take E =
	200 kN/mm^2 and I = 3.5 X 10 mm.
5	Determine the support moments using slope deflection method for the frame as shown in
	<u>FIGURE – 4</u> . Also draw Bending Moment diagram.
6	A beam AB of uniform section of span 8 m and constant $EI = 4.0 \times 10^4 \text{ Nm}^2$ is partially
	fixed at ends when the beam carries a point load of 100 kN at distance of 4 m from the left
	end A.
	The following displacements were observed.
	(i) Rotation at A = 0.015 rad (clockwise) and settlement at A = 15 mm
	(ii) Rotation at B = 0.0080 rad (anticlockwise) and settlement at B = 20 mm
	Analyse using Slope Deflection Method.

SHANTILAL SHAH ENGINEERING COLLEGE, BHAVNAGAR Applied Mechanics Department

Assi	gnmen	t No: 04		ΜΑΤΡΙΥ ΜΕΤΙΙΟΡΟ
Date: 03/07/2019			ΜΑΙΚΙΧ ΜΕΙΗΟΟΣ	
Sub Code 2150608		2150608	Title of Subject	STRUCTURAL ANALYSIS - II
<u> </u>				
#			Que	stions
1	Differe	ntiate between stil	ffness and flexibility.	
2	Give c	haracteristics of s	tiffness and flexibility	matrix. Also prove the product of Stiffness and
	Flexibi	lity is unit		
3	Formu	late Displacement	Matrix for a propped c	antilever beam of span 4 m subjected to a central
	point l	oad of 40 kN.		
4	A prop	ped cantilever be	am of span 6 m is sub	jected to point load at center. Analyse the beam
-	using f	iexibility method	and draw shear force	and bending moment diagrams.
5	Analys	e the beam as show	vn in Figure using stiffr 12 kN/m	ess method and draw SFD and BMD.
				OU KIN
		R		
		A	В	С
		5	5 m —	2 m - 3 m -
6	Analys	e the beam as shov	wn in Figure using stiffn	ess method and draw SFD and BMD.
		- 24 kN/m	60 kN 	60 kN
			\rightarrow	
		A	B	
		⊢ 4 m −		$2 m \rightarrow 2 m \rightarrow 4 m \rightarrow 2$
7	Using s	tiffness method fo	rmulate displacement n	natrix, reactions and draw Shear force and bending
	momei	nt diagram for the	beam shown in Figure.	
			60 kN	50 kN
		X	<u>_69</u> _	
		$\stackrel{A}{\vdash}$ 4 m	\rightarrow 3 m \rightarrow	$3 \text{ m} \rightarrow 2 \text{ m} \rightarrow 4 \text{ m} \rightarrow 1$

Г

SHANTILAL SHAH ENGINEERING COLLEGE, BHAVNAGAR Applied Mechanics Department

Assignment No: 05	INFLUENCE LINES	
Date: 03/07/2019		
Sub Code 2150608	Title of Subject Structural Analysis - II	

#	Questions
1	State the Importance of the Influence Lines. Give the Difference between Influence Line Diagram
	and Shear Force & Bending Moment Diagrams
2	A simply supported beam AB has a span of 8 m. Draw influence lines for R_{A},R_{B},V_{X} & M_{X} for a
2	section 3 m from left end support
2	A train of loads as shown in <i>Figure – 1</i> crosses a simply supported girder of span 18 m from left to
3	right. Calculate maximum SF & BM at section 8 m from left.
4	Draw the influence line diagram for the beam shown in Figure - 2, (i) the reaction at A,
4	(ii) the reaction at C, (iii) the shear at B.
	Two wheel loads of 16 kN & 8 kN at a fixed distance apart of 2 m, cross a beam of 10 m span. Draw
5	the influence line for B.M & S.F for a point 4 m from the left abutment & find the maximum B.M $\&$
	S.F at that point.
	A simple support beam of span 30 m is loaded by a train of six wheel loads each of equal
6	magnitude 5 kN and separated by 2 m distance. Calculate the maximum positive and negative
	shear force and bending moment at 10 m from left support.
	A uniformly distributed load of 12 kN/m and 3 m length crosses a simply supported girder of span
7	10 m from left to right. Draw influence line for shear force and bending moment at 4 m from left
	hand and find maximum shear force and bending moment at this section. Refer <i>Figure - 3</i> .
Q	Draw Influence Line diagram for forces in the members U_2U_3 , L_1L_2 , U_3L_3 , U_2L_3 and L_1U_2 of a Truss
0	as shown in <u>Figure - 4</u> .

