Shantilal Shah Engineering College, Bhavnagar Applied Mechanics Department

\#	Questions
CASTIGLIANO'S FIRST THEOREM	
1	State and explain Castigliano's first theorem.
2	Determine the vertical deflection at free end in the overhanging beam as shown in Figure - 1. Assume constant EI. Use Castigliano's method.
3	Find the displacement at B, as shown in Figure - 2 by using Castigliano's theorem. $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
4	A continuous beam of two equal spans L is uniformly loaded over its entire length. Find the magnitude R of the middle reaction by using the Castiglione's theorem.
5	Determine the vertical and horizontal deflection at free end for Figure - 3, by using unit load method. EI is constant.
6	Determine the $\theta_{A}, \theta_{\mathrm{B}}, \delta_{\mathrm{c}}, \delta_{\mathrm{D}}$ for a beam shown in Figure - 4 . Take EI $=10 \times 10^{13} \mathrm{Nmm}^{2}$.
7	Discuss the Castigliano's theorem. How it will be useful for the analysis of truss?
CASTIGLIANO'S SECOND THEOREM	
1	For continuous beam ABC as shown in Figure - 5, determine support reactions with the use of Castigliano's theorem.
2	Find fixed end moments and reactions at supports for a fix beam shown in Figure - 6 .
3	Determine reactions at supports for a beam shown in Figure - $\mathbf{7}$.
4	Analyse the Portal frame shown in Figure - $\mathbf{8}$ by Castigliano's Second Theorem method.
5	Find the forces in the members BE and FC of the Truss as shown in Figure - 9. The ratio of length of cross sectional area for all the members is same.
UNIT LOAD METHOD	
1	Using unit load method, find horizontal and vertical displacement at D of frame as shown in Figure-3. Take E $=2 \times 10^{5} \mathrm{~N} / \mathrm{mm} 2$ and $\mathrm{I}=2 \mathrm{X1} 10^{8} \mathrm{~mm}^{4}$
2	Calculate the vertical displacement at free end C for the cantilever bent as shown in the Figure - 10.
3	Determine the vertical deflection of joint "C" of the truss shown in Figure - $\mathbf{1 1}$ by unit load method. The cross-sectional area of each member is $400 \mathrm{~mm}^{2}$. $\mathrm{E}=2 \mathrm{X} 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

Shantilal Shah Engineering College, Bhavnagar Applied Mechanics Department

Shantilal Shah Engineering College, Bhavnagar Applied Mechanics Department

Assignment No: 02	MOMENT DISTRIBUTION METHOD
Date: 03/07/2019	
Sub Code 2150608	Title of Subject Structural Analysis - II

\#	Questions
1	Explain: Carry over factor, Moment Distribution factor and Rotation contribution factor
2	Define the term 'sway'. Enlist the situation wherein say occur in portal frames.
3	Analyze the beam as shown in FIGURE - $\mathbf{1}$ by moment distribution method and draw shear force and bending moment diagram. The beam has constant EI for both the spans.
4	Determine the support moment for a continuous beam as shown in FIGURE - $\mathbf{2}$ by moment distribution method. Also draw bending moment diagram.
5	A beam $A B$ is fixed at A and hinged at B. If the end B sinks by amount ' δ ', what will be the moment developed at end A and at end B ?
6	A fixed beam AB is of span 5 m . If one of the end settles by 10 mm , what will be the reaction developed at each support? $\mathrm{E}=200 \mathrm{X} 10^{3} \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{I}=3 \mathrm{X} 10^{7} \mathrm{~mm}^{4}$.
7	For a continuous beam ABCD as shown in FIGURE - 3 find the moments at all supports if , end A rotates by 0.002 radian in the clockwise order and the support B settles by 5 mm . $\mathrm{E}=200 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{I}=9 \mathrm{X} 10^{7} \mathrm{~mm}^{4}$.
8	Analyze the frame as shown in FIGURE-4 by moment distribution method and draw shear force and bending moment diagram
9	Analyze the frame shown in FIGURE - $\mathbf{5}$ with using moment distribution method. Draw bending moment diagram only
10	Analyse the portal frame shown in Figure - $\mathbf{6}$ by moment distribution method and find only Final Moments.

A $\quad \|$90 kN B C C	
FIGURE - 1	FIGURE - 2
FIGURE - 3	
FIGURE - 5	FIGURE-6

Shantilal Shah Engineering College, Bhavnagar

 Applied Mechanics Department| Assignme | No: 03 | SLOPE DEFLECTION METHOD | |
| :---: | :---: | :---: | :---: |
| Date: 03/07/2019 | | | |
| Sub Code | 2150608 | Title of Subject | Structural Analysis - II |

\#	Questions
1	Using slope deflection method analyses the beam as shown in FIGURE - 1. Draw SFD and BMD both.
2	Analyse the beam shown in FIGURE - $\mathbf{2}$ by slope deflection method and find unknown slopes at Joint B and C. Joint B sinks by 10 mm . E $=2 \times 10^{5} \mathrm{MPa}$ and $\mathrm{I}=16 \mathrm{X} 10^{7} \mathrm{~mm}^{4}$.
3	Find the final moments at supports for the beam shown in FIGURE-2 and plot Shear Force and Bending Moment diagram both.
4	Determine the support moments using slope deflection method for the continuous girder shown in FIGURE - 3 if the support B sinks by 2.5 mm . For all members Take $\mathrm{E}=$ $200 \mathrm{kN} / \mathrm{mm}^{2}$ and $\mathrm{I}=3.5 \mathrm{X} 10 \mathrm{~mm}$.
5	Determine the support moments using slope deflection method for the frame as shown in FIGURE - 4. Also draw Bending Moment diagram.
6	A beam AB of uniform section of span 8 m and constant $\mathrm{EI}=4.0 \mathrm{X} 10^{4} \mathrm{Nm}^{2}$ is partially fixed at ends when the beam carries a point load of 100 kN at distance of 4 m from the left end A. The following displacements were observed. (i) Rotation at $\mathrm{A}=0.015 \mathrm{rad}$ (clockwise) and settlement at $\mathrm{A}=15 \mathrm{~mm}$ (ii) Rotation at $\mathrm{B}=0.0080 \mathrm{rad}$ (anticlockwise) and settlement at $\mathrm{B}=20 \mathrm{~mm}$ Analyse using Slope Deflection Method.

(I)

Assignment No: 04 Date: $03 / 07 / 2019$		MATRIX METHODS	
Sub Code	2150608	Title of Subject	STRUCTURAL ANALYSIS - II

\#	Questions
1	Differentiate between stiffness and flexibility.
2	Give characteristics of stiffness and flexibility matrix. Also prove the product of Stiffness and Flexibility is unit
3	Formulate Displacement Matrix for a propped cantilever beam of span 4 m subjected to a central point load of 40 kN .
4	A propped cantilever beam of span 6 m is subjected to point load at center. Analyse the beam using flexibility method and draw shear force and bending moment diagrams.
5	Analyse the beam as shown in Figure using stiffness method and draw SFD and BMD.
6	Analyse the beam as shown in Figure using stiffness method and draw SFD and BMD.
7	Using stiffness method formulate displacement matrix, reactions and draw Shear force and bending moment diagram for the beam shown in Figure.

Shantilal Shah Engineering College, Bhavnagar Applied Mechanics Department

Shantilal Shah Engineering College, Bhavnagar Applied Mechanics Department

Assignment No: 05		INFLUENCE LINES	
Date: 03/07/2019			
Sub Code	2150608	Title of Subject	Structural Analysis - II

\#	Questions
1	State the Importance of the Influence Lines. Give the Difference between Influence Line Diagram and Shear Force \& Bending Moment Diagrams
2	A simply supported beam $A B$ has a span of 8 m . Draw influence lines for R_{A}, R_{B}, V_{x} \& M_{x} for a section 3 m from left end support
3	A train of loads as shown in Figure - $\mathbf{1}$ crosses a simply supported girder of span 18 m from left to right. Calculate maximum SF \& BM at section 8 m from left.
4	Draw the influence line diagram for the beam shown in Figure - 2, (i) the reaction at A, (ii) the reaction at C , (iii) the shear at B .
5	Two wheel loads of $16 \mathrm{kN} \& 8 \mathrm{kN}$ at a fixed distance apart of 2 m , cross a beam of 10 m span. Draw the influence line for B.M \& S.F for a point 4 m from the left abutment \& find the maximum B.M \& S.F at that point.
6	A simple support beam of span 30 m is loaded by a train of six wheel loads each of equal magnitude 5 kN and separated by 2 m distance. Calculate the maximum positive and negative shear force and bending moment at 10 m from left support.
7	A uniformly distributed load of $12 \mathrm{kN} / \mathrm{m}$ and 3 m length crosses a simply supported girder of span 10 m from left to right. Draw influence line for shear force and bending moment at 4 m from left hand and find maximum shear force and bending moment at this section. Refer Figure - 3 .
8	Draw Influence Line diagram for forces in the members $\mathrm{U}_{2} \mathrm{U}_{3}, \mathrm{~L}_{1} \mathrm{~L}_{2}, \mathrm{U}_{3} \mathrm{~L}_{3}, \mathrm{U}_{2} \mathrm{~L}_{3}$ and $\mathrm{L}_{1} \mathrm{U}_{2}$ of a Truss as shown in Figure - 4.

FIGURE - 4

