

Assignment No: 01				Eundamentale Of Statically Determinate Structures		
Date:	07	//01/2	2019	Fundamentals Of Statically Determinate Structures		
Sub Code		21406	603	Title of Subject	Structural Analysis - I	

#	Questions			
1	Indeterminate structures are better than determinate structures" Comment on the statement.			
2	Differentiate between stable and unstable structure.			
3	Differentiate static and kinematic indeterminacy. Also explain these terms with respect to fixed beam.			
4	State and Explain Principle of Superposition.			
5	Explain and prove Maxwell's reciprocal theorem			
6	Find static indeterminacy and kinematic indeterminacy of structures given in Figure – 1.			
7	Analyze the rigid jointed portal frame shown in the Figure – 2. Draw shear force diagram, bending moment diagram and axial force diagram			
8	Analyze the grid shown in the Figure – 3 and draw shear force, bending moment and twisting moment diagrams.			
9	For the portal shown in the Figure – 4, find out moment at B, shear and axial force in member AB.			
10	Find out SI and KI of the structures shown in the Figure – 5.			
11	Find SI and KI of structures shown at Figure – 6.			

Assignment No: 02

Date: 07 /01/2019

COLUMNS AND STRUTS

Sub Code 2140603 Title of Subject Structural Analysis - I

#	Questions
1	Write the equations for Euler's crippling load for different end conditions of a long column.
2	Write down any four assumptions made for derivation of Euler's crippling load formula.
3	Derive an expression for crippling load when one end of column is fixed and the other end is free.
4	A column one meter long has cross sectional area of 9 cm ² . Find the slenderness ratio if the section is
1	(a) circular, (b) square and (c) hollow circular with inner radius half the outer radius.
	A hollow cast iron column has outside diameter 200 mm and thickness of 20 mm. It is 4.5 m long
5	and fixed at both ends. Calculate the safe load and ratio of Euler's and Rankine's critical load. For
	cast iron F_c = 550 N/mm, α = 1/1600 and E = 0.8 X 10^5 N/mm².
	A hollow cylindrical cast iron column is 4 m long with both ends fixed. Find the minimum diameter
6	of the column if it has to carry a safe load of 250 kN with a factor of safety of 5. Take internal
	diameter as 0.8 times the external diameter. Take σc = 500 MPa and Rankine's constant α = 1/1600.
	A 2.5 m long pin ended column of square cross section is made up of timber. Using Euler's formula,
7	find out size of the column with a factor of safety 2 for 250 kN axial load. Consider E = 12.5 GPa,
	Allowable stress in axial compression = 12 MPa.
	A circular column has both end hinged with length of 6.0 m and diameter of 160 mm. If the yield
8	strength of the material is 410 N/mm and rankine's constant is 1/4800, calculate Euler's critical
	load and rankine's critical load.
	A solid cast iron circular column of 4.0 m height is to be erected such that its one end remains fixed
9	and other end remains hinged. Find the size of the section, if column has to carry a safe axial load of
	300 kN. Take factor safety of 5, fc =500 N/mm ² , Rankine's constant α = 1/1500.

Assignment No: 03

Date: 07 /01/2019

DIRECT AND BENDING STRESSES

Sub Code 2140603 Title of Subject Structural Analysis - I

#	Questions				
	A rectangular pier of size 300 mm X 300 mm is subjected to a compressive load of 900 kN at one				
	of the corner. Find the stress intensities at all four corners of the pier and draw stress distribution				
1	diagram. If the load is acting at the center of the pier, also draw the stress distribution diagram.				
	Refer Figure – 1 .				
	A concrete dam of trapezoidal section has a top width 2 m, bottom width of 6 m and height				
	12 m. It retains water up to 10 m on vertical side. Determine the maximum and minimum stress				
2	intensities at the base of the section. The density of the material used is 24 kN/m³ and density of				
	water as 10 kN/m³. Refer Figure - 2.				
	A masonry chimney 20 m high is of circular section, the external diameter and internal diameter of				
	the section being 6 m and 4 m respectively. The chimney is subjected to horizontal wind pressure				
3	of 1.2 kN/m² of projected area. Find the maximum and minimum stresses at the base. Take unit				
	weight of masonry as 20 kN/m ³ .				
	A short column has a square section 300 mm X 300 mm with a square hole of 150 mm X 150 mm				
4	as shown in Figure - 3 . It carries an eccentric load of 1500 kN, located as shown in figure.				
	Determine the maximum and minimum stresses across the section.				
	A masonry retaining wall is 6 m high, 0.75 m wide at top and 2 m wide at bottom. The wall is				
	retaining soil up to top. The face of the wall on soil side is vertical. The lateral pressure due to soil				
5	varies from zero at top to 3.2 kN/m² at bottom. Specific weight of masonry is 24 kN/m³. Draw				
	stress distribution at base of wall due to self-weight of wall alone and due to self-weight of wall and				
	soil pressure, and shear force at section under load. Draw BMD.				
	A cylindrical chimney 24 m high of uniform circular section is 4 m external dia. & 2 m internal dia.				
7	It is subjected to a horizontal wind pressure of 1000 N/mm ² . If the coefficient of wind pressure is				
	0.66 & unit wt. of masonry is 22 kN/m³. Find the maxm & minm stresses at the base of the section.				
	For a trapezoidal masonry dam as shown in the Figure – 4 , plot the stress distribution at the base.				
8	Take density of masonry = 20 kN/m^3 .				

Assignn	nent		DICDLA CEMENT OF DETERMINATE DEAMS AND DLANE TRUCC	
Date:	07/01/2019		DISPLACEMENT OF DETERMINATE BEAMS AND PLANE TR	
Sub Code		2140603	Title of Subject	Structural Analysis - I

#	Questions			
1	Differentiate between the real beam and conjugate beam			
2	Derive an expression of slope at supports for the simply supported beam subjected to point load at the center of the beam.			
3	For the simply supported beam subjected to UDL, derive the expressions for slope at support and deflection at the mid span using moment area method.			
4	Find the slope and deflection at the free end B of a cantilever beam AB as shown in Figure – 1 by moment area method. Take $I = 2 \times 10^8 \text{ mm}^4$, $E = 2 \times 10^5 \text{ N/mm}^2$.			
5	Find the slope and deflection at the center C of a simply supported beam AB as shown in Figure – 2 by moment area method. Take $I = 2 \times 10^8 \text{ mm}^4$, $E = 2 \times 10^5 \text{ N/mm}^2$.			
6	Find the deflection and slope for a cantilever beam shown in Figure – 3, using moment area method.			
7	A simply supported beam of 3 m span carries two point loads of 120 kN and 80 kN at a distance of 0.6 m and 2 m from the left support. If for the beam $I = 16 \times 10^8 \text{ mm}^4$ and $E = 2.1 \times 10^5 \text{ N/mm}^2$, Calculate the deflection under loads using Macaulay's method. Refer Figure – 4.			
8	A cantilever 2 m long is loaded as shown in Figure $-$ 5. Find slope and deflection at free end using Macaulay's method. Take $E = 200$ GPa and $I = 160 \times 10^6$ mm ⁴ .			
9	For the beam shown in figure – 6, determine the deflection and slope at C using Macaulay's method.			
10	Find the slope at A and deflection under B for the beam shown in the Figure – 7 using Macauly's method. Take $EI = 3000 \ kN \ m^2$			
11	Determine the horizontal deflection and vertical deflection at D, of a truss shown in Figure – 8. Using unit load method. AE is same for all members.			
12	For the truss shown in figure – 9, calculate horizontal deflection at C by unit load method. Area of member AB is 400 mm ² . Area of AC and BC is 600 mm ² .			
13	Find out slope and deflection at C for the beam shown in Figure – 10 by conjugate beam method.			
14	Find the slope and deflection at point A and B for the beam shown in the Figure – 7 using conjugate beam method. EI = 3000 kN m^2			
15	Find the deflection and slope under load 100 kN using conjugate beam method. Refer Figure – 11. Take $E = 200$ GPa and $I = 150$ X 10^6 mm ⁴ .			

	Find the slope and deflection at point B and C for the beam shown in the Figure - 12.
16	Take EI = 3000 kN m^2
17	Find the slope at A and deflection under C for the beam shown in the Figure -13 . Take EI = 3000 kN m ²

Assignn	nent	No: 05	Eivad Daama & Consistant Deformation Mathed	
Date:	07 /01/2019		Fixed Beams & Consistent Deformation Metho	
Sub Code		2140603	Title of Subject	Structural Analysis - I

#	Questions				
1	Analyse a fixed beam has span 5 m subjected to central point load of intensity 20 kN. Draw bending moment diagram				
2	Derive the equation for fixed end moment developed if one of the supports of a fixed beam settles by amount '8'.				
3	Calculate fixed end moments if left support of fixed beam is rotates clockwise by an amount ' θ '				
4	Find out fixed end moment for a fixed beam carrying point load at the center of the span				
5	A fixed beam AB carries an U.D.L. of 20 kN/m over entire span of 5 meter. If support B sink by 1 mm find out fixed end moments				
6	A beam AB of span 5 meter fixed at both ends carries a uniformly distributed load of 20 kN/m over the whole span. The left end 'A' rotates clockwise by 0.8° & right end 'B' sinks by 10 mm. Determine the fixed end moments & the reactions at the supports. Draw also shear force & bending moment diagrams. Take E = $200 \text{ kN} / \text{mm}^2 \text{ & I} = 10 \text{ X} 10^7 \text{ mm}^4$				
7	Find reaction at support for the propped cantilever beam having span 6 m and U.D.L. of 10 kN/m throughout span using Consistence deformation method. Take EI = Constant.				

Assign	nent	No: 06	CTD AIN ENED CV	
Date:	07	//01/2019	STRAIN ENERGY	
Sub Code		2140603	Title of Subject	Structural Analysis - I

#	Questions				
1	Define: Strain energy, Resilience, Proof Resilience and Modulus of Resilience.				
2	Derive the equation for strain energy stored in an element due to Bending.				
3	Write-down only equation for strain energy due to Impact				
4	Derive the equation for strain energy stored in an element due to Torsion				
5	Derive an expression for strain energy stored in a body for any loading condition				
	A steel bar of 100 cm long and rectangular in section 50 mm x 100 mm is subjected to an				
6	axial load of 1.5 kN. Find the maximum stress if, (a) the load is applied gradually. (b) the				
0	load is applied suddenly (c) the load is applied after falling through a height of 10 cm. What				
	are the strain energies in each of the above case? Take $E=2 \times 10^5 \text{ N/mm}^2$				
	Determine the ratio of strain energy stored in the simply supported beam AB of span 5 m				
7	carries a 25 kN load at a central point and the same load uniformly distributed over its				
	entire span				

Assignn	nent	No: 07	Thin Culindon	
Date:	07 /01/2019		Thin Cylinder	
Sub Code		2140603	Title of Subject	Structural Analysis - I

#	Questions
1	The Boiler is subjected to an internal pressure of 3 N/mm ² . The thickness of plate is 2.5 cm and
	the permissible tensile stress is 125 N/mm². Find out the maximum diameter when efficiency of
	longitudinal joint is 90 % and circumferential joint is 35 %.
2	The boiler shell is to be made of 20 mm thick plate having a limited tensile stress of 125 N/mm ² .
	If the efficiencies of the longitudinal & circumferential joints are 80% and 30% respectively.
	Determine
	a. The maximum permissible diameter of the shell for an internal pressure of 2.5 N/mm ² .
	b. Permissible intensity of internal pressure when shell diameter is 1.6 m
3	A vessel in the shape of a spherical shell of 1.4 m internal diameter and 4.5 mm thickness is
	subjected to a pressure of 1.8 N/mm ² . Determine the stress induced in the material of vessel.
4	A thin spherical cylinder of 1.2 m internal diameter is subjected to an internal pressure of
	1.6 N/mm ² . If the permissible stress is 80 N/mm ² and joint efficiency is 75 % find out the
	maximum thickness of shell.
5	A thin spherical shell of internal diameter 1.5 m and thickness 8 mm is subjected to internal
	pressure of 1.5 N/mm². Determine the increase in diameter & increase in volume in shell.
	Take E = 2 X 10 ⁵ N/mm ² and Poisson ratio = 0.3

Assignment No: 08
Date: 07 /01/2019

Arches, Cables & Suspension Bridges

Sub Code 2140603 Title of Subject Structural Analysis - I

#	Questions
1	A three hinged parabolic arch of 20 m span and 4 m central rise carries a point load of 4 KN at
	4 m from left hand hinge. Calculate the normal thrust and radial shear under the load point. Also
	calculate the maximum positive and negative B.M.
2	A three hinged parabolic arch rib has span of 84 m and rise of 18 m to the central pin at the
	crown. The rib carries load of intensity 2 kN/m over a length of 1/3 of the span from left hand
	hinge. Calculate the B.M at quarter span points.
3	A symmetrical three hinged circular arch has span of 16 m and central rise of 4 m. it carries a
	point load of 16 kN at 4 m from left hand.
	Find out 1) magnitude of thrust at springing. 2) Reactions at support
	3) B.M. at 6m from left hinge. 4) maxi +ve & -ve B.M.
4	A light cable 18 m long is supported at two ends at same level. The supports are 16 m apart. The
	cable supports three loads 8, 10, 12 kN diving 16 m distance in four equal parts. Find the shape
	of the cable and tension in various parts.