Experiment No. 07

Aim: - To study and verify Resonance in R-L-C series circuit and measurement of resonance frequency.

Goal: -

- Define resonant frequency in series circuit.
- Understand series resonance phenomenon.

Apparatus: -

Sr.	Apparatus	Range	Qty.
No.		-	
01	Voltmeter		
02	Ammeter		
03	Resistance		
04	Chock coil		
05	Capacitor		
06	A.C. Supply		
07	Connecting wires		

Theory:-

Consider an AC-series circuit in which the resistance, inductance and capacitor are connected in series across a variable frequency A.C. source.

Let, impedance of the circuit,

$$Z = R + j(X_L - X_C)$$

Now, if the frequency is increased X_L increase and X_C decrease. Resistance is not dependent on Frequency of source. X_L can be made equal to X_C at one frequency.

$$|Z| = \sqrt{R^2 + (X_L - X_C)^2}$$

$$Z_C = \frac{1}{2\Pi fC}$$

Where, $X_L = 2\Pi f L$ and $X_C = \frac{2}{2\Pi}$

Such a circuit shown in figure 1 is connected to an A.C source of constant supply voltage V but having variable frequency. The frequency can be varied from zero, increasing and approaching infinity. Since X_L and X_C are functions of frequency at a particular frequency of applied voltage X_L and X_C will be become equal in magnitude.

Since,
$$X_L = X_C$$

 $X_L - X_C = 0$
So, $Z = \sqrt{R^2 + 0}$, Z=R.

Basic of Electrical Engineering EED, SSEC, Bhavnagar

The circuit, when $X_L = X_C$ & hence Z = R is said to be in resonance in a series circuit since current I remains same.

Figure 1

$$IX_L = IX_C$$

 $V_L = V_C$

So at resonant V_L and V_C will be canceling out each other.

The supply voltage, $V = \sqrt{V_R^2 + (V_L - V_C)^2}$ $V = \sqrt{V_R^2}$ $V = V_R$

The phasor diagram is shown in figure 2.

The phasor diagram shown in figure can be redrawn as shown in figure 3.

Basic of Electrical Engineering EED, SSEC, Bhavnagar

This is equal to supply voltage and current in phase as shown in figure 4.

Now, Resonant frequency [At resonant condition X_L=X_C]

$$2\Pi f_r L = \frac{1}{2\Pi f_r C}$$
$$f_r^2 = \frac{1}{4\Pi^2 LC}$$
$$f_r = \frac{1}{2\Pi\sqrt{LC}}$$

L=inductance in Henry

C=capacitance in farads

 f_r = resonant frequency in HZ

EFFECT OF SERIES RESONANCE: -

- 1. When a series R-L-C circuit at resonance $X_L = X_C$, the net reactance of circuit is zero.
- 2. Z = R, then the impedance of circuit is minimum.

Basic of Electrical Engineering EED, SSEC, Bhavnagar

- 3. I = V/Z Here Z is minimum, so I is maximum.
- 4. Since, I is maximum, the power dissipated would be maximum $P = I^2 R$.
- 5. $V_L = V_C$, $V = V_R$ i.e. since supply voltage is in phase with the supply current *I*. Hence power factor angle $\Phi = 0$. And circuit power factor $\cos \Phi = \cos 0 = 1$

Circuit Diagram:-

Procedure: -

- Connect the circuit as per circuit diagram.
- Set suitable value of the parameter from decade box and switch on the supply. Adjust minimum frequency of the supply.
- Increase the frequency gradually and note down the current flowing through the circuit.
- Continue to increase the frequency and not down the reading until the current increases to maximum and starts decreasing.
- Plot the graph of current v/s frequency.
- Obtain the resonance frequency from graph and also calculate resonance frequency from equation.

Observation Table:-

Sr. No.	Frequency in Hz	Current mA
01		
02		
03		
04		
05		
06		
07		
08		
09		
10		
11		
12		
13		
14		
15		

Basic of Electrical Engineering EED, SSEC, Bhavnagar

Calculations:-

Conclusion:-

Basic of Electrical Engineering EED, SSEC, Bhavnagar