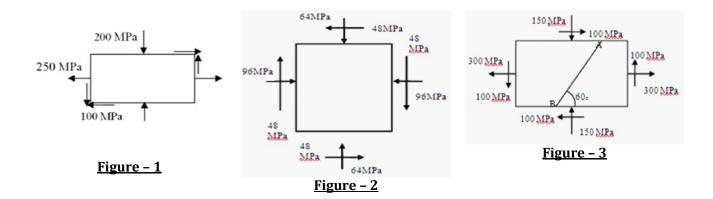

SHANTILAL SHAH ENGINEERING COLLEGE, BHAVNAGAR Applied Mechanics Department

Assignment No: 05						
Date: 11/09/2018			SIMPL	E STRESSES & STRAINS		
Sub	Code	2130003	Title of Subject	Mechanics Of Solids		
	[
#			Ques	stions		
1.	Defin	ne Modulus of Elastic	city, Poisson's ratio, Mod	ulus of Rigidity, shear strain, volumetric strain and		
	Bulk	Modulus.				
2.	Expl	Explain Homogenous Material, Composite Element and prismatic Element.				
3.	Sketo	Sketch the Characteristic Stress - Strain curve for mild steel under tension and show salient				
	point	ts on it.				
4.	Expla	ain yield stress, ul	timate stress and brea	king stress with neat sketch for M.S specimen		
	wher	n subjected to tensile	e loading.			
5.	Derive the relation between bulk modulus and modulus of elasticity.					
6.	Deter	rmine the compress	ive stress developed in a	a punch of 10 mm diameter, used to make a hole		
	of 10)mm diameter in 8n	nm thick mild steel plate	e. The shear strength of mild steel is 300MPa.		
7.	A me	ember is formed by	connecting end to end a	300mm long steel bar of 50 mm X 50 mm square		
	section	on with 300 mm le	ong aluminum bar of 1	00 mm X 100 mm square section as shown in		
	Figure – 1 . Determine the axial push required to produce the total decrease in length of 0.2 m		p produce the total decrease in length of 0.2 mm.			
	Take	$E_{\text{Steel}} = 2 \text{ X } 10^5 \text{ MPa}$	and Ealuminum= 0.7 X 1	05 MPa.		
8.	A ste	epped bar made of s	teel, copper and brass i	s under axial force as shown in Figure – 2 and is		
	in eq	uilibrium. The dian	neter of steel is 12mm, o	diameter of copper is 16mm and the diameter of		
	brass	s is 20 mm. Determ	ine (i) Magnitude of un	known force P (ii) stresses in each material and		
	(iii)	Total change in le	ength of the bar. Take	Esteel = 200GPa, Ecopper = 100GPa and		
	Ebra	ss = 80GPa				
9.	A baı	r ABC is loaded as sl	hown in Figure - 3 , in w	hich portion AB is of uniform section and portion		
	BC is	s of tapering section	. Calculate the value of	load "P" so that the total deformation is 0.3 mm.		
	Negle	ect the deformation	n due to self weight.	Calculate the change in volume of portion AB.		
	Take	E= 110 GPa and 1/r	n=0.25.			
10.	A wi	re is tied straight be	tween two rigid poles 1	0 m apart has initial tensile stress 10 N/mm ² at		
	32° (C. Calculate stress in	wire if temperature red	luces to minus 8° C. Take E = 75 X 10^5 N/mm ² and		
	α = 2	0 X 10 ⁻⁶ /°C.				

SHANTILAL SHAH ENGINEERING COLLEGE, BHAVNAGAR Applied Mechanics Department

11. A rectangular block of size 300 X 150 X 100 is subjected to forces as shown in Figure - 4. If E = 75 GPa and Poisson's ratio is 0.25, calculate (i) Change in volume (ii) Modulus of rigidity and (iii) Bulk modulus.
12. A steel rod of 30 mm diameter is placed inside a copper tube of external diameter 50 mm and internal diameter 40mm, having length equal to 500 mm and connected rigidly at the ends as shown in Figure - 5. The bar is subjected to axial pull of 150 kN. Find the stresses in each material and elongation of the composite bar. Take Esteel = 200 GPa and Ecopper = 100GPa.



SHANTILAL SHAH ENGINEERING COLLEGE, BHAVNAGAR Applied Mechanics Department

Assignment No: 06 Date: 11/09/2018			PRINCIPLE STRESSES			
Sub C	ode	2130003	Title of Subject	Mechanics of Solids		
#	Questions					
1.	What are principal planes and principal stresses?					
2.	Define the terms Complementary shear stress, Resultant stress, Angle of obliquity.					
3.	Plot Shear stress distribution diagram for I-section, T-section, H-section, Rectangular section, Circular section					
4.	For the element shown in the following Figure – 1 , find the normal stress, tangential stress and resultant stress on the plane AB. Also, find principal stresses and principal planes. Use any method.					

5.	A point in two dimensional stressed body is shown in <u>Figure - 2</u> . Determine the magnitudes and
	directions of principal stresses, using analytical method.

6.	For the infinitesimal element shown in the Figure - 3 , find the normal stress, tangential stress and
	resultant stress on the plane AB.

