SHANTILAL SHAH ENGINEERING COLLEGE, BHAVNAGAR GENERAL DEPARTMENT

MATHEMATICS

- Syllabus of Mid Semester Test- March 2018
- Subject: COMPLEX VARIABLES AND NUMERICAL METHODS(2141905)
- B. E. Semester-IV (Mechanical Branch)

Sr.No.	Topics
1	Complex Numbers and Functions: Exponential, Trigonometric, De Moivre's Theorem, Roots of a complex number ,Hyperbolic functions and their properties, Multi-valued function and its branches: Logarithmic function and Complex Exponent function ,Limit ,Continuity and Differentiability of complex function, Analytic functions, Cauchy-Riemann Equations, Necessary and Sufficient condition for analyticity, Properties of Analytic functions, Laplace Equation, Harmonic Functions, Harmonic Conjugate functions and their Engineering Applications
2	Interpolation: Finite Differences, Forward, Backward and Central operators, Interpolation by polynomials: Newton's forward ,Backward interpolation formulae, Newton's divided Gauss & Stirling's central difference formulae and Lagrange's interpolation formulae for unequal intervals
3	Numerical Integration: Newton-Cotes formula, Trapezoidal and Simpson's formulae, error formulae, Gaussian quadrature formulae
4	Solution of a System of Linear Equations: Gauss elimination, partial pivoting, Gauss-Jacobi method and Gauss-Seidel method
5	Roots of Algebraic and Transcendental Equations: Bisection, false position, Secant and Newton-Raphson methods, Rate of convergence
6	Numerical solution of Ordinary Differential Equations: Euler and Runge-Kutta methods